AO-85 Commissioned, Handed Over To AMSAT-NA Operations

AO-85 has been formally commissioned and turned over to AMSAT Operations, who are now responsible for the scheduling and modes.

The following guidelines are provided for users:

  1. Uplink power should be on the order of minimum 200 W EIRP for full quieting at lower antenna elevation angles. Your mileage may vary. With an Arrow, 5 W has been used successfully to make contacts.

  2. Polarity is important. The satellite antennas are linear. So, if you are using linearly polarized antennas, you will need to adjust throughout the pass. Full duplex operation facilitates these adjustments while transmitting and is highly recommended.

  3. The downlink is very strong and should be heard well with almost any antenna.

  4. Downlink audio is 5 kHz deviation, as expected. Many will perceive that the audio is “low.” This is an effect of the filtering below 300 Hz, which provides for the DUV telemetry, coupled with any noise on the uplink signal resulting from lack of full quieting or being off frequency. That makes for less fidelity than a typical receiver in terms of audio frequencies passed.

  5. Transmit (downlink) frequency varies with temperature.  Due to the wide range of temperatures we are seeing in the eclipse cycle, the transmitter can be anywhere from around 500 Hz low at 10°C to near 2 kHz low at 40°C.

  6. Receive frequency has been generally agreed to be about 435.170 MHz, although the AFC makes that hard to pin down and also helps with the uplinks that are off frequency.

Probably the most notable observations about AO-85 are an apparent lack of sensitivity and difficulty in turning on the repeater with the 67 Hz CTCSS when it is not yet activated, or holding it on by the presence of the CTCSS.  We have determined a probable cause for the sensitivity issue and while that can’t be fixed on AO-85 we are taking steps to prevent similar issues on the rest of the Fox-1 CubeSats.  The tone detection threshold along with the receive sensitivity issue makes it hard to bring up the repeater.  This is being addressed by adjusting the values for a valid tone detection in the other Fox-1 CubeSats now that we have on orbit information about temperatures and power budget.  Full details will be in the Nov/Dec AMSAT Journal.

It is important to remember that science is the reason behind the Fox-1 satellites. Not only does science help with the launch cost, it provides a great amount of educational value both from the science payload and in amateur radio itself. The data-under-voice (DUV) telemetry is an excellent way to provide the science without sacrificing the use of the satellite for communications, which would be the case if higher speed downlinks were needed. DUV provides constant science as long as the repeater is in use, which in turn provides more downlink data for the science – a mutually beneficial combination.

Fox-1A is AMSAT-NA’s first CubeSat. Many new techniques are incorporated and lessons will be learned, as with any new “product.”  The Fox-1 Project is a series of CubeSats. A total of five will be built and flown. Launches are scheduled for three more, and a new NASA CubeSat Launch Initiative proposal will be submitted for the fifth. We will incorporate changes from what we learn in each launch, to the extent possible, in subsequent Fox-1 CubeSats.

Of the four NASA sponsored CubeSats on the ELaNa XII launch October 8, we are sad to report that ARC1 was never heard from and BisonSat was lost after a few weeks of operation. AMSAT extends our deepest sympathy to the people who worked so hard on these projects. To our members, we want to say that the Fox Team is very proud and pleased that our first CubeSat is very successful and hopefully will be for some time.

FoxTelem 1.02 Released

FoxTelem Version 1.02 is now available for download. Like the last
release, you can patch your installation by downloading the patch file. In
this case it is a single file to replace.

You can download it from here: http://amsat.us/FoxTelem/

Everyone should upgrade to 1.02 because this readies FoxTelem for
transition to the new Telemetry Server which will be more reliable.

Additionally this release fixes a number of issues and adds the ability to
download data from the Server to view/analyze in FoxTelem. If you download
data, please make sure you save it into a separate directory to your local
data, otherwise you will over write it. Of course frequent backups of your
data minimize this risk.

The release notes are below:

* Fixed bug where opening the Fox-1A spacecraft menu would cause a crash
* Added horizontal and vertical lines to the graphs if button clicked
* Fixed Typo on measurements tab
* Fixed a bug where UTC was not displayed for the Diagnostic tables
* Capture the string version of the STP date in ENGLISH for all users, but
leave other dates in local language
* Fixed bug where TCA date could be null and a SERIOUS error was reported
* Fixed issue where the tabs were always refreshed when the spacecraft
menu closed
* Fixed bug where UTC date was sometimes wrong on the spacecraft T0 panel
* Ready FoxTelem for sending server data via TCP
* Support downloading data from the server


Chris E. Thompson
[email protected]
[email protected]

UKube-1 CubeSat Completes Mission

From AMSAT News Service:

UKube-1, the UK Space Agency’s first national spacecraft, has now completed
its nominal mission following over 14 months of operations. Discussion is
underway with AMSAT-UK about the possibility of taking over UKube-1 operations
to continue its educational and outreach activities.

Launched in July 2014, UKube-1 is a technology demonstration mission with a
broad set of objectives aimed at attracting and training future generations of
engineers, encouraging collaboration across sectors and institutions, fast
tracking space technology development and engaging with students.

As a 3 unit CubeSat (30x30x10cm), flying 4 main payloads, with all the key
subsystems of much larger satellites, UKube-1 remains one of the most advanced
CubeSats ever built. Despite some technical challenges in orbit, the mission
has achieved a range of milestones including:

• delivery into the correct planned orbit (around 650km, sun-synchronous)
• successful deployment of solar panels and antenna
• good battery health
• slow spin rate measured
• uplink and downlink capabilities checked, including Large Data Transfer,
downlink at 3 speeds, and redundant communications mode
• all core payloads commissioned and data collected for each
• on-board camera technology successfully tested
• data downlinked from multiple ground stations across the globe

UKube-1 has also helped maintain the UK’s leading position in the CubeSat
sector. Participation in the mission placed Clyde Space in an excellent
position to capitalize on the fast growing global nanosatellite market. The
company has experienced 100% year on year growth, both in turnover and
employees, as a direct result from involvement in UKube-1, and is firmly
established as a global leader.

Mark McCrum, Bright Ascension Ltd, said:
“UKube-1 provided us with an invaluable opportunity to gain flight heritage
for our software technology and to get deeply involved in the operation of a
complex CubeSat mission. It gave a huge boost to our credibility as a space
software provider and has been instrumental in winning further work.”

Craig Clark, CEO Clyde Space Ltd, said:
“UKube-1 represents a pivotal achievement in the development and growth of
Clyde Space. The project moved the company from being a spacecraft subsystems
supplier to providing full missions for our customers. To give some context to
the extent that Ukube-1 has had to our business, Clyde Space has more than
quadrupled in size in the last 3 years and there are currently over 60 CubeSats
planned through production here in Glasgow over the next 18 months. The return
on investment for Ukube-1 in terms of jobs and export sales for the UK has been
outstanding and is a great example of industry and the UK Space Agency working
together to put the UK at the forefront of global space technology.”

Professor Andrew Holland, Open University, added:
“Involvement in the UKube-1 mission, though our C3D instrument, has had a
positive effect on our research and technology program within the Space
Instrumentation Group at the Open University, as well as a positive effect on
our technology partners in the project; XCAM Ltd and e2v Ltd. The project has
helped the OU to build a new strand of instrument development within the group,
raised awareness of the CubeSat platform as a potential vehicle to accelerate
the development of scientific space instrumentation, and has provided early in-
orbit-demonstration of technologies. The mission introduced us to new academic
and industrial collaborators operating in the space sector and supported the
career development of the young engineers and scientists working on the
project.”

STFC’s RAL Space provided the Ground Station for the mission at Chilbolton
Observatory in Hampshire UK, and UKube-1 operations were commanded from there.

Mission Manager Dr Helen Walker said:
“It has been a very exciting time, made possible only with the great support
from all the teams involved.”

Although the Agency-supported mission phase has ended, discussion is underway
with AMSAT-UK about the possibility of taking over UKube-1 operations to
continue its educational and outreach activities until the satellite orbit
naturally degrades.

More information about UKube-1 can be found in the missions section of the UK
Space Agency website
https://www.gov.uk/government/case-studies/ukube-1

Source
https://www.gov.uk/government/news/ukube-1-completes-mission

UKube-1 carries a set of AMSAT-UK FUNcube boards which provide an educational
beacon for use by schools and a linear transponder for amateur radio
communications.

UKube-1 nominal frequencies:
• 145.840 MHz Telemetry downlink
• 145.915 MHz FUNcube subsystem beacon
• 400 mW inverting SSB/CW linear transponder
– 435.080-435.060 MHz Uplink
– 145.930-145.950 MHz Downlink

[ANS thanks AMSAT-UK for the above information]