Extending Command and Control for GOLF

Heimir Thor Sverrisson
WI1ANT / TF3ANT

wlant@arrl.net

Abstract

This work describes how existing AMSAT [2] software
infrastructure has been adapted and extended to accommo-
date the Command and Control requirements of the new
GOLF-Series Satellites.

The new GOLF [3] series satellites are three times bigger
than the previous AMSAT Fox [3] satellites and are consid-
erably more complex. One of the main differences is that
GOLF has Attitude Detection and Control System ADCS
[6], separate microwave communication equipment and a
much more complex solar panel and power management
system.

The existing Command and Control [[L] software was not
designed to deal with these new systems and therefore the
work described here was taken on.

The main new feature is the ability to send Multi-Part
Commands (MPC) to the spacecraft, which is necessary to
handle the requirements of the new systems.

1 System overview

The overall system is shown in figure [I} It consists of
a GOLF satellite, two existing software components and

Command Uplink

AMCOM ::>

Commands GOLF Satellite

Telemetry Downlink

Multi-part | Telemetry headers
Command K —————————1 FoxTelem
(MPC)

Figure 1. System Overview

the new Multi-Part Command system (MPC). The existing
command and control software is called AMCOM and will
be described in more detail below. FoxTelem [4] is the ex-
isting software used to receive telemetry from the space-
craft, which has been extended to support a back-channel
for status of the new Multi-Part Commands.

2 Existing AMCOM Command Structure

AMCOM has several command types, but the one of in-
terest here is the Software Command. This type is used to
send commands that can carry only up to four parameters,
each of which is a 16-bit integer.

The structure for Software Commands is shown in ta-

ble[1l

Offset | Value Remarks

0 | Reset Number LSByte | 6 byte header start
1 | Reset Number MSByte
2 | Time Since Low Byte
3 | Time Since Mid Byte
4 | Time Since High Byte
5 | Spacecraft Address 6 byte header end
6|0 Payload start
7 | Namespace
8 | Command Low Byte
9 | Command High Byte

10 | Value-1 Low Byte

11 | Value-1 High Byte

12 | Value-2 Low Byte

13 | Value-2 High Byte

14 | Value-3 Low Byte

15 | Value-3 High Byte

16 | Value-4 Low Byte

17 | Value-4 High Byte Payload end

18 —49 | Signature 32 Bytes (512 bit)

Table 1. AMCOM Software Command structure

When the command is sent to the spacecraft it gets ex-
panded to 100 bytes by the Forward Error Correction (FEC)
encoding, taking about 1 second at 1200 baud.

The Namespace field is used to group commands into
different categories. Only a handful of namespaces are cur-
rently in use and the same is true for the commands within
each namespace.

The commands can carry up to four 16-bit integers as
arguments, or a total of 8 bytes.

3 Multi-Part Commands

The limited payload size was not a problem for the FOX
series satellites, but with the new systems on GOLF, it is
necessary to send commands with larger payloads. In par-
ticular, the ADCS system needs a complete set of orbital
parameters that must be set as a single command.

In order reduce system risk and reuse existing software
as much as possible, it was decided to implement new com-
mand types called Multi-Part Commands (MPC). These
command types would be able to send payloads of up to
128 bytes in up to 16 parts of 8 bytes each.

Offset | Value Remarks
7 | Namespace MPC if 0x80 bit is set
8 | Command Byte
9 | maz, current SeqNo | Sequence Byte

Table 2. MPC modifications to the Software Command

To accommodate the MPC extension, the existing AM-
COM command structure was modified as shown in table[2l

The Flight Software in the spacecraft only needs to check
if the Namespace has the high bit set, i. e. is > 0280. If so,
it knows that this is an MPC command and will process it
accordingly, as described below.

The Command field has been reduced to one byte, in-
stead of the previous two bytes per Namespace. This is
not a problem as 256 different commands per Namespace
is more than enough.

3.1 Sequence Numbers

The modifications to the command structure above al-
low for up to 16 AMCOM commands, called Parts, to be
sent as a single MPC command. The byte at offset 9, called
the Sequence Byte, now contains two 4-bit fields, the max-
imum sequence number of the Parts in the MPC command,
and the sequence number of this particular Part.

An example of an MPC command with 5 parts is shown
in table 3

Sequence Byte | Remarks
0x40 | max part is 4, this is part O
0x41 | max part is 4, this is part 1
0x42 | max part is 4, this is part 2
0x43 | max part is 4, this is part 3
0x44 | max part is 4, this is part 4

Table 3. Example of an MPC command with five parts

Think of the first nibble (4 bits) as the maximum value
the second nibble can have. The second nibble is the se-
quence number of this particular part, both are zero based.

3.2 Command Acknowledgments

To confirm the reception of each part, the MPC system
uses a five bit field in the telemetry header that was previ-
ously unused called transmissionStatus. The most sig-
nificant bit is called is Ack and the four lower bits are called
seq, described in more detail below.

As each telemetry packet is constructed by the Flight
Software, it checks if there are any MPC commands that
have been received since the last telemetry packet was sent.
If so, it updates the TransmissionStatus field in the
telemetry header to indicate the status of the last received
MPC command. As the telemetry packets are sent several
seconds apart, it is important that the transmissionStatus
be updated just before the packet that shows the most recent
status is sent.

The value in the TransmissionStatus field will have
its high bit set if there is an MPC command in progress.
The lower four bits will then contain the sequence number
of the last part correctly received. When all parts have been
received correctly, the high bit will be cleared and the lower
four bits will be set to zero.

In case of an error on the spacecraft, the high bit will be
cleared and the lower four bits will contain an error code
(1 —15). The error code will be transmitted from the space-
craft until the next MPC command is started.

An example of the TransmissionStatus field and the
meaning of its bits in telemetry headers is shown in table 4]

isAck | seq Meaning
True | 0z01 | Second part is missing
True | 0203 | Fourth part is missing
False | 0200 | Command executed

Table 4. Example of the Transmission Status

3.3 Ground Station algorithms

The procedure for sending MPC commands is shown in
algorithm

The Ground Station software has two separate threads of
execution. These two threads share three variables: ¢sAck,
seq and got Ack. The first one indicates if there is an MPC
command in progress on the spacecraft, the second one is
the sequence number of the next part to be sent (in case
retransmission is needed), and the third indicates that we
have received an acknowledgment since we started on this
MPC command. These common variables are reset with
the procedure on line 5 which is called every time we start
sending a new MPC command on line 12.

When isAck is false, the seq variable will contain the
result of the last MPC command, which is zero if the com-
mand was successfully executed or an error code (1 — 15) if
an error occurred.

The entry point is the SENDMPC procedure on line 11,
which takes as input a list of parts that make up the MPC
command. After resetting the shared variables, we wait for
the next acknowledgment from the spacecraft on line 13.

The guard on line 14 checks if there is an MPC command
in progress. If not, we send all parts of the MPC command
to the spacecraft starting on line 15. If there is an MPC
command in progress, we report an error on line 19 and the
operator should try again later.

Note that we send all parts of the MPC command with-
out waiting for acknowledgement. This is done to speed up
the process as telemetry packets are only sent every few sec-
onds and will not reflect the true state of the MPC command
in the spacecraft until after all parts have been sent.

Also note that we can still receive an acknowledgment
from the spacecraft during the transmission of a long MPC
command, that will then set the gotAck state variable to
true.

Next we enter a loop on line 22 where we wait for the
next telemetry packet from the spacecraft. On line 24 we
check if we have received a packet with isAck set to true.
We only need to resend if we receive a sequence number is
not equal to the number of parts sent modulo 16, because
that indicates all packets have been received correctly. Note
that if, for example, we are sending 16 parts, the sequence
number when all parts have been received correctly will be
0zf + 1 mod 16 = 0.

In case isAck is false we check if any acknowledgment
has been received since we started transmission on line 30.
If not we declare an error.

Next check on line 32 is for error code from the space-
craft and if that is not the case we are done sending.

The WAITFORACK procedure in algorithm [2]is running
in the second thread of the Ground Station software. It waits
until a telemetry packet is received and extracts the five bit

TransmissionStatus field from the header. It then sets
the shared boolean, isAck, indicating if there is an MPC
command in progress (based on the high bit of the field),
and the sequence number of the first missing part (based on
the lower four bits). As mentioned above, when isAck =
false the four lower bits will be zero if the MPC command
was successful, or an error code (1—15) if an error occurred.

The check on line 4 will allow us to capture any packet
with the isAck flag true that is received during the send-
ing period. This logic makes the detection of MPC ac-
tivity in the spacecraft more robust because we insist on
getting at least one such packet during the MPC com-
mand transmission. Otherwise, we might only get 0200
as TransmissionStatus before we start sending and the
same value after we’ve sent all parts, which would be ex-
actly the same response as if no part of the MPC command
was received.

It is implied that WAITFORACK will block until a
telemetry packet is received, but will timeout after a reason-
able time if no packet is received, returning an error condi-
tion that will terminate the send function.

In this code we assume that the DOWNLINKRECEIVE-
EVENT is used to synchronize the two threads. The Wazt
called on lines 13 and 23 in algorithm [I] will block until
the event is Set by the other thread. This is done when a
telemetry packet is received on line 4 in algorithm [2] The
Clear method will clear the event so that the next call to
W ait will block.

We also assume that the shared variables, isAck, seq and
got Ack, are protected by a mutex or similar mechanism for
safe access from the two threads.

3.4 Flight Software algorithm

The Flight Software algorithm for receiving MPC com-
mands is listed as algorithm [3] The main entry point is the
RECEIVEPART procedure on line 25, which takes as input
a single part of an MPC command. In line 26 we check if
there is an MPC command in progress. If not, we initialize
the state for a new MPC command on lines 27 to 30.

If there is an MPC command in progress, we check on
line 31 if the Namespace and Command fields match the
current command. If not, we reset the internal state on
line 32 and report an error on line 33. The call to ERROR
sets the value of error to 1 and returns without storing this
part. The error value is reported through the telemetry in-
terface as described below.

If all is good, we store the part in line 36 by calling
the STOREPART procedure. The STOREPART procedure on
line 13 copies the payload of the part to a buffer on line 14.
It then updates the bitmap of received parts on line 15 and
computes the sequence number of the next part to be re-
ceived on line 16 by calling the FIRSTGAP function.

Algorithm 1 Send MPC Parts

1: isAck < false

2: seq + 0

3: gotAck + false

4:

5. procedure RESET

6: isAck < false
7: seq <0

8: gotAck + false
9: end procedure

10:

11: procedure SENDMPC(Cmds)

12: RESET

13: DOWNLINKRECEIVEEVENT(Wait)

14: if —isAck then

15: for all cmd € C'mds do

16: AMCOMSEND(cmd)

17: end for

18: else

19: ERROR("MPC command in progress’)
20: end if

21: isDone < false

22: while —isDone do

23: DOWNLINKRECEIVEEVENT(Wait)
24: if isAck then

25: if seq = len(C'mds) mod 16 then
26: isDone + true

27: else

28: AMCOMSEND(Cmds[seq])
29: end if

30: else if ~got Ack then

31 ERROR(”No response from spacecraft’)
32: else if seq # 0 then

33: ERROR(seq, "MPC Command failed”)
34: else

35: isDone < true

36: end if

37: end while

38: end procedure

Algorithm 2 Downlink MPC Acknowledgments

1: procedure WAITFORACK
2: DOWNLINKRECEIVEEVENT(Clear)

1sAck, seq < WAITFORTRANSMISSIONSTATUS

3
4 DOWNLINKRECEIVEEVENT(Set)
5 if is Ack then

6: gotAck + true

7 end if

8: end procedure

On line 17 we check if all parts have been received.
If so, we can execute the command by passing the com-
plete buffer to an external EXECUTECOMMAND function
on line 18. In order to guarantee that at least one telemetry
packet is sent with the isAck bit set, we synchronize with
the telemetry thread. By clearing the ACKSENTEVENT on
line 19 we ensure that we block on line 20 until a telemetry
packet with the is Ack bit has been sent.

We then reset the internal state on line 21 by calling the
RESETMPC procedure. The telemetry interface described
below will then indicate that the MPC command was suc-
cessful.

The FIRSTGAP function on line 5 computes the se-
quence number of the first missing part by checking the
bitmap of received parts. Note that bitmap is a 32-bit in-
teger, to accommodate a command with up to 16 parts.

This method allows for parts to be received out of order
and also allows for retransmission of missing parts. The
missing parts are requested from the lowest ordered to the
highest ordered as seen in the code in FIRSTGAP.

3.5 Flight Software Telemetry Interface

The Flight Software interface to telemetry is shown in
algorithm 4} Every time a telemetry packet is constructed
the GETTRANSMISSIONSTATUS function is called to get
the bitmap value to put in the TransmissionStatus field
of the telemetry header.

If there is an MPC command in progress, the function re-
turns 010 OR-ed with the sequence number (0 — 15) of the
first missing part of the command, indicating the first gap
in the received parts. If an error has occurred, the function
returns the error code (1 —15). If there is no MPC command
in progress and no error, the function returns 0z00.

Note that the error code will persist until the next MPC
command is started.

On line 4 we synchronize with the MPC receive thread
that will be blocked in line 19 of algorithm [3| until at least
one telemetry packet has been sent to the Ground Station
with the isAck bit set.

Also note that the telemetry interface is being called by
a different thread from the one that is receiving the MPC
commands. Therefore, the shared variables, inProgress,
nextAck, and error must be protected by a mutex or simi-
lar mechanism.

3.6 Ambiguous acknowledgment

There is a problem with the simple algorithms described
above. In the case of an MPC command with exactly 16
parts, a missing Part 0 will generate the same acknowledg-
ment value as if all parts have been received correctly, be-
cause 16 mod 16 = 0.

Algorithm 3 Receive MPC command

1:
- nextAck < 0
s error < 0

e
R DN AL 2o

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:

R A A A S

inProgress < false

: function FIRSTGAP

firstGap < 0

while pBitmap & (1 < (firstGap)) # 0 do
firstGap < firstGap + 1

end while

return firstGap mod 16

. end function

: procedure STOREPART(cmd)

CoprYTOBUFFER(partBuffer, cmd)
pBitmap <+ pBitmap | (1 < emd.seq)
nextAck < FIRSTGAP
if nextAck = (emd.maxSeq + 1) mod 16 then
EXECUTECOMMAND(nmSpace, command,
partBuffer)
ACKSENTEVENT(Clear)
ACKSENTEVENT(Wait)
RESETMPC
end if
end procedure

procedure RECEIVEPART(cmd)
if —inProgress then
RESETMPC
inProgress < true
nmSpace < cmd.nmSpace
command <— cmd.command
else if cmd.nmSpace # nmSpace V
cmd.command # command then
RESETMPC
ERROR(1,”’command mismatch”)
return
end if
STOREPART(cmd)
end procedure

procedure RESETMPC
mProgress < false
error <0
nextAck < 0
ACKSENTEVENT(Clear)
pBitmap < 0200000000
nmSpace < 0
command < 0

end procedure

Algorithm 4 MPC Telemetry Interface
1: function GETTRANSMISSIONSTATUS

2: if inProgress then

3: transmissionStatus < 0x10 | next Ack
4: ACKSENTEVENT(Set)

5: else if error # 0 then

6: transmissionStatus < error

7: else

8: transmissionStatus < 0x00

9: end if

10: return transmissionStatus

11: end function

This condition can easily be address in the Ground Sta-
tion software because the missing Part 0 acknowledgment
will be received before all parts had been sent, which can
never happen for the acknowledgment of the final part.

This is a consequence of needing to communicate 17
states while only being able to set 16 values, since we have
a four bit field. Other acknowledgment schemes have sim-
ilar problems, i.e. if we were to send the sequence number
of the last consecutive part received (0 — 15) instead of the
next to be sent, we would have no way of indicating that we
need to resend Part 0.

4 Changes to existing Software

To implement the MPC extension method described
above, several changes will have to be made to existing soft-
ware. These changes are discussed below.

41 AMCOM

AMCOM itself will need very minimal changes, as the
structure of these new Multi-Part Commands is the same as
the current Software Commands. Code that is very simi-
lar to what is already implemented for external CAN com-
mands will be added to AMCOM. When used with MPC,
AMCOM is practically acting in a worker-mode. AMCOM
will still be used for actual transmission of the commands
to the spacecraft in addition to Authentication, Authoriza-
tion, Forward Error Correction and so on. This approach
minimizes risk by reusing existing tried-and-true software.

4.2 Flight Software

The Flight Software in the spacecraft must be extended
to process commands with Namespace > 0280 by setting
aside storage for 8§ bytes per part of a Multi-Part command
to store the payload while parts are being received. This is
a maximum of 128 bytes for a command with 16 parts.

The TransmissionStatus logic described above must
also be implemented by the existing Telemetry module, for
inclusion in all the telemetry packet headers sent to the
ground.

Finally when all the Parts of a Multi-Part command have
been received, the Flight Software must take the action
needed, i.e. update the orbital parameters of the ADCS.

4.3 FoxTelem

FoxTelem must be able to communicate the Trans-
missionStatus field to the MPC Sending Software. This
change has already been implemented by sending the whole
telemetry header to an external program, like the MPC, over
a TCP/IP socket.

44 AUTHGEN

The AUTHGEN program is now used to create autho-
rization for users to use certain commands in AMCOM for
certain spacecraft. The current scheme will be extended to
authorize individual Multi-Part Commands as described be-
low. Because the construction of the actual payload of the
Multi-Part Commands is more complicated than the static
nature of the existing commands, the payload data will be
managed further by the MPC Ground Software.

5 Command interactions

In order to safely operate the spacecraft with this exten-
sion of the command structure several constraints will have
to be considered in the Flight Software.

5.1 Concurrent commands

We need to consider the case of more than one Ground
Station sending commands at the same time. If they do not
overlap in time they can arrive correctly at the spacecraft.

As the Namespace value in the commands can be used to
select the code path in the Flight Software there should not
be a problem if a regular command arrives between parts
of a Multi-Part Command. This simply assumes that the
state storage for Multi-Part Commands is not affected by
the processing of the regular commands and they can be
executed independently.

A different Multi-Part Command received while another
one has not been fully processed should cancel the first one
and clear all partial states for that command as implemented
in the algorithms listed above. This would also happen in
the valid scenario of a Ground Station operator changing
their mind in the middle of a transmission and deciding to

send a different command. Note that an AMCOM com-
mand must be signed correctly to be accepted by the Flight
Software.

5.2 Timing of commands

Using synchronization of timing between the Ground
Station and a spacecraft available from FoxTelem, a rather
reliable monotonically increasing timestamps can be sent
by AMCOM via MPC. This will allow the Flight Software
to compare timestamps of a part to the previously received
part. If too much time has elapsed from the previous one
all previous parts should be discarded as described above
for partial command cancellation and this part should be re-
garded as a start of a new Multi-Part transmission (including
the command value itself).

Partial Multi-Part Commands do not need to be kept
in memory indefinitely. If command transmission of a
Multi-Part Command has not been completed before LOS,
it should be discarded and re-transmitted as a whole later.
There is no need to check for this condition periodically,
the mechanism described above for timeout will take care
of it as soon as the next part is received (maybe not until the
next pass).

6 Configuration files
6.1 AUTHGEN

In order to fit the Multi-Part Commands into the autho-
rization structure of AMCOM a new command type, mcmd,
will be added to the SatCmds file. One item is added per
Multi-Part Command in the same way as Software Com-
mands, allowing for the same authorization granularity as
other commands.

The SatCmds currently has multiple sections by type
of command. These sections are each in a CSV format,
but with different fields per command type. It needs to be
decided if a new more flexible format, i.e. JSON, should be
used instead for this configuration.

Regardless of the format, new data types will need to
be introduced to handle the data payload of the Multi-Part
Commands. Table[5]shows the suggested data types.

6.2 MPC

The payload data for the Parts sent from MPC to AM-
COM will be read from a CSV file with the header as speci-
fied in the Sat Cmds file. This also allows for these payload
CSV files to be generated by other programs, i.e. converters
from TLE, etc.

Data Type | Description

i8 8-bit unsigned integer

ilé 16-bit unsigned integer little endian
i32 32-bit unsigned integer little endian
i64 64-bit unsigned integer little endian
£32 32-bit IEEE floating point

f64 64-bit IEEE floating point

str utf-8 string up to § bytes

Table 5. Suggested data types for MPC payload

6.3 Header file generation

With the added complexity of Multi-Part Commands it
is important to automatically generate the header files used
by the Flight Software to define the command values and
the data structures used to access the different fields in the
payload. The input to the header file generator are the con-
figuration files discussed above.

7 Conclusion

The new Multi-Part Command system allows for send-
ing commands with up to 128 bytes of payload, which is
sufficient for the new GOLF satellites.

The existing AMCOM software will be modified to sup-
port the new command types, while using the tried-and-true
communication mechanisms and protocols.

The headers of the telemetry packets sent by the space-
craft will be modified to include the status of the Multi-
Part Commands, thereby providing a back-channel for com-
mand acknowledgment and errors using the FoxTelem soft-
ware.

The Flight Software in the spacecraft will also be modi-
fied to support the new command types, while keeping the
existing functionality mostly intact, thereby minimizing the
risk of reducing overall system stability.

References

[1] Burns Fisher, W2BFJ. A Modern Approach To Secure
Commanding of an Amateur Satellite. In Proceedings
of the AMSAT 33" Space Symposium, pages 37-42,
2015

[2] AMSAT. Radio Amateur Satellite Corporation.
https://www.amsat.org/about—-amsat/\

Accessed: 2025-09-20.

[3] Bob Davis, KF4KSS. GOLF-TEE Mechanical Design.
In Proceedings of the AMSAT 36" Space Symposium,
pages 11-18, 2018

[4] Chris Thompson, GOKLA/AC2CZA. Designing the
Fox-1E PSK Modulator and FoxTelem demodulator.
In Proceedings of the AMSAT 36™ Space Symposium,
pages 2741, 2018

[5] Tony Monteiro, AA2TX. Fox Satellite Program Over-
view. In Proceedings of the AMSAT 31*' Space Sympo-
sium, pages 41-17, 2013

[6] PJ.Haufe, et. al. Design and Verification of the Attitude
Determination and Control Algorithms for the Source
Cubesat. In Deutscher Luft- und Raumfahrtkongress,
2023, DocumentID: 610141. https://www.dglr.
de/publikationen/2023/610141.pdf Ac-
cessed: 20225-09-20

https://www.amsat.org/about-amsat/
https://www.dglr.de/publikationen/2023/610141.pdf
https://www.dglr.de/publikationen/2023/610141.pdf

	System overview
	Existing AMCOM Command Structure
	Multi-Part Commands
	Sequence Numbers
	Command Acknowledgments
	Ground Station algorithms
	Flight Software algorithm
	Flight Software Telemetry Interface
	Ambiguous acknowledgment

	Changes to existing Software
	AMCOM
	Flight Software
	FoxTelem
	AUTHGEN

	Command interactions
	Concurrent commands
	Timing of commands

	Configuration files
	AUTHGEN
	MPC
	Header file generation

	Conclusion

