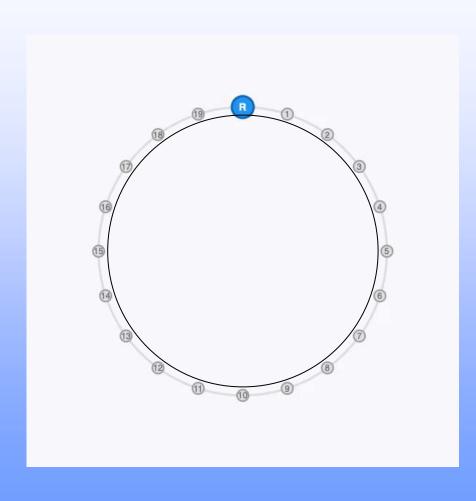

A New Use For The Whole Orbit Data Algorithm

Burns Fisher (WB1FJ)
Radio Amateur Satellite Corporation

What is WOD?

- WOD means Whole Orbit Data
- How do we get data over locations with no ground stations?
 - Answer: Send data when in range of a ground station that was collected earlier in the orbit
- But bird does not know when there is a ground station listening!
 - Answer: Send the same data over and over and over...


How We Do WOD

- **❖** All our satellites since Fox have "MRAM" non-volatile memory
 - Essentially infinite write cycles
 - **❖** High tolerance to radiation
- ❖ Older FM Foxes used it for 'Voice of Fox' and Min/Max
- Since Fox-1e/HuskySat it also stores WOD
- ❖ MRAM organized as a circular buffer
- ❖ Collect data 1/minute and store in MRAM
- Transmit many data packets for each one that is collected

Ring Buffer

Radio Amateur Satellite Corp.

- Blue: Where we read from to downlink
- Green: Where we write a new set of data
- This example show each entry being read (and transmitted) about 7 times before it is overwritten

Created by Claude Al

How Much WOD To Save?

Radio Amateur Satellite Corp.

- In other words, how big is the ring buffer? The truth is surprising!
 - No matter how big the memory, we still transmit each WOD packet the same number of times (31 in Fox-1e)
- Consider:
 - Small amount of memory:
 - a given packet is sent more frequently
 - but does not stay in the MRAM as long/sees fewer ground stations
 - More memory:
 - a given packet is sent less frequently, but spread over a wider area on earth
- How much memory use is optimal?

Carl Wick, N5MIM, found out!

Optimal WOD Size

Radio Amateur Satellite Corp.

- ❖ What is the optimal memory size?
- Carl did a simulation including a typical polar orbit, and noting the locations of ground stations that typically collect data for AMSAT satellites.

❖ Then answer: 150!

For math and details, see papers for 2017 Symposium, Fox-1E Telemetry by W2BFJ and N5MIM

WOD Credits

- Carl Wick, N3MIM -- WOD Simulation
 - See paper in 2017 Symposium Procedings
- Chris Thompson, AC2CZ/G0KLZ FoxTelem
 - See GitHub/AC2CZ/FoxTelem
- Mike McCann K2GHZ WOD Initial Proposal
 - See references in W2BFJ 2017 Symposium Paper
- Burns Fisher, W2BFJ/WB1FJ Fox Telemetry Transmission
 - See paper in 2017 Symposium Proceedings

Telemetry Speed

- Fox-1A Fox-1D: 200bps DUV
- Fox-1E, HuskySat-1, MESAT1: 1200bps BPSK
 - Amount of data to collect did not change much.
 - Used 6x speed to send WOD!
- Golf Satellites more complex—more data required!
 - Health data is ~similar, but...
 - ADCS commissioning
 - Future pictures???

- Why not faster?
 - LIHU/Fox-1E-type modulator designed for BPSK and can't go much faster
 - Golf-TEE uses LIHU as "fallback" in case newer RT-IHU/transmitter fails
 - Later may use RT-IHU only
 - RT-IHU/DCT has higher speed capability.

But for now, how to deal with 1200bps and larger data quantities?

How Much Data How Often

- ADCS Commissioning: Will need multiple data sets at different times. Ex:
 - Raw Magnetometer readings
 - Raw Gyro Readings
 - Coarse Sun Sensor data
 - Some collected every 10 seconds for a full orbit
- Remember one downlink frame is 669 bytes.
- Several needs and non-needs:
 - Data needs to have been collected sometimes seconds apart
 - Data needs to be timestamped
 - But does not need to reach the ground within seconds

Summary of Requirements

Radio Amateur Satellite Corp.

- Collect Data Frequently
- Downlink to sparsely-located ground stations
- ...but not necessarily immediately
- Sound familiar?

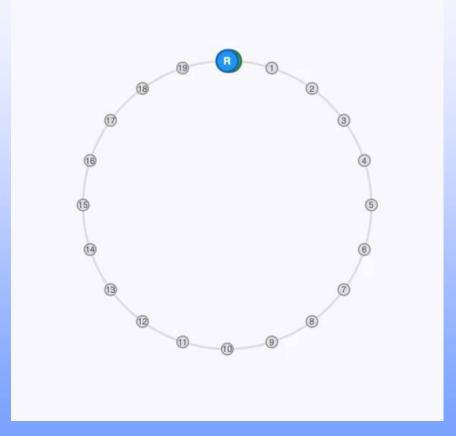
● ~Like WOD!

How Does LDS Differ From WOD?

Radio Amateur Satellite Corp.

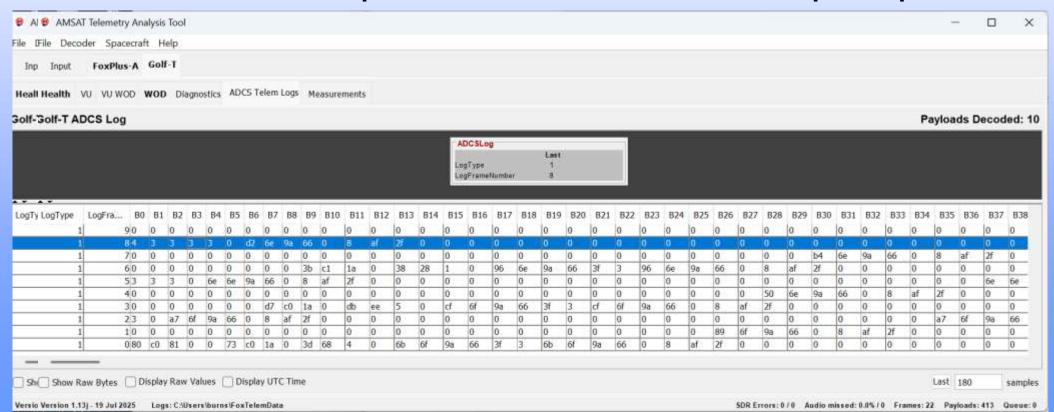
LDS

- Large but limited qty of data
- Must not lose any data
- Only done a few times in mission
- Fits in MRAM memory

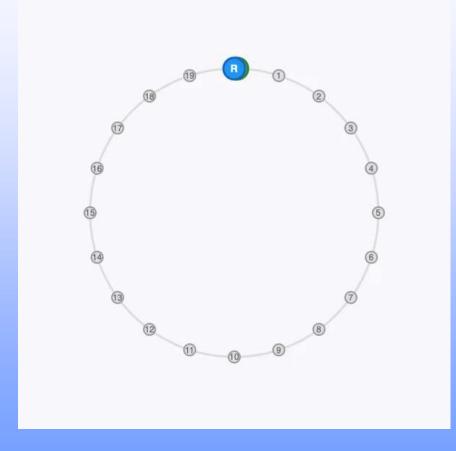

WOD

- Continuously collected
- Best not to lose but not a tragedy
- Collected and transmitted for life of mission
- Total far more than MRAM size

Can We Modify WOD Algorithm To Accommodate These Differences?


How to do LDS

- Write frame-sized chunks of data in MRAM
 - Include timestamp
 - Amount written must be less than MRAM size (no over-writing)
 - Collect and write just once
- When done writing, treat data as circular buffer to read from
 - Transmit same list of data over and over


The Ground Side

- FoxTelem receives on the ground
- To FoxTelem LDS looks identical to WOD
- Requires adding new payloads and tabs with WOD-like data
- Thanks to Chris Thompson G0KLA/AC2CZ/VE2TCP for help and quick work!

Partial Transmission

- **□** What if we are just missing a few?
 - Command to send only missing range
 - Animation: Transmit only 6, 7, 9,10

LDS Summary

- Can collect many thousands of bytes quickly
- Send them slowly in small timestamped chunks
- Repeat sending over and over hoping most get received
- Command only missing chunks to be sent until we have everything -- HOORAY

Thanks for listening!

STS-125 Atlantis Launch