

Bringing the CubeSatSim to UT Dallas: Workshop Reflections

Agastya Bose KJ5MSH

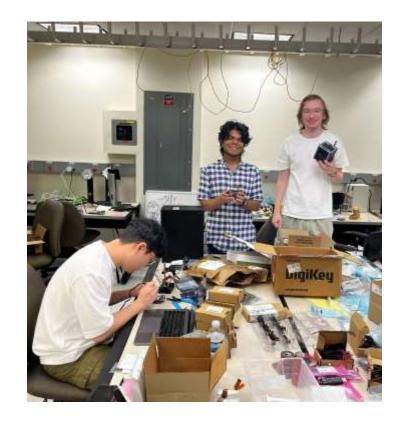
PhD Student, Computer Science
The University of Texas at Dallas (<u>agastya@utdallas.edu</u>)
AMSAT Space Symposium, October 18, 2025.

Agenda

About our team

4 Activities at the workshop

Preparing for the workshop

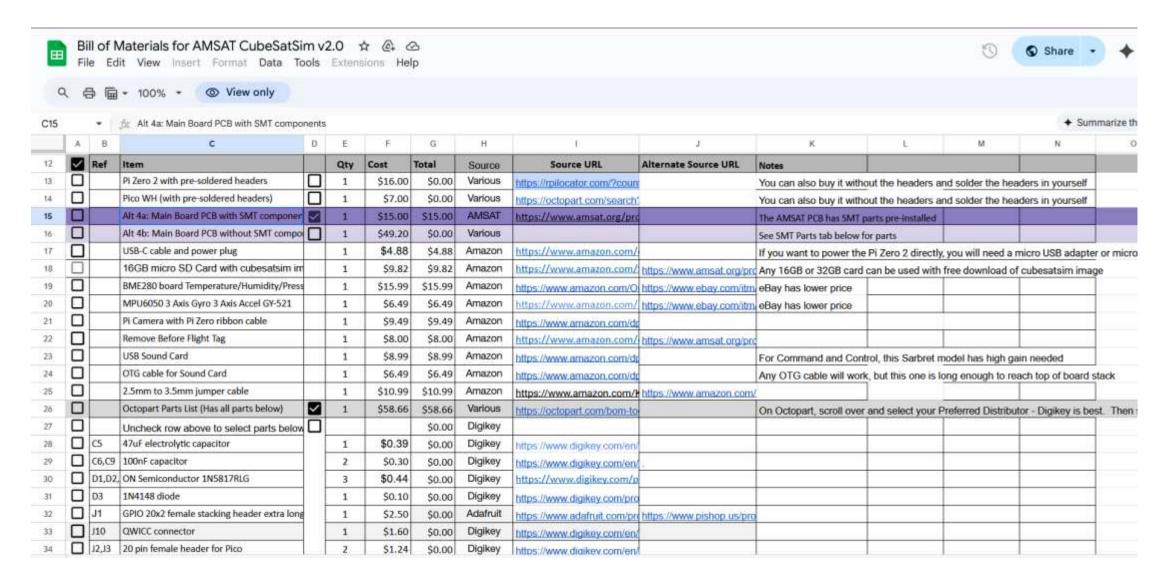

5 Participant feedback on the CubeSatSim

About the workshop

6 Future work: Research using the CubeSatSim

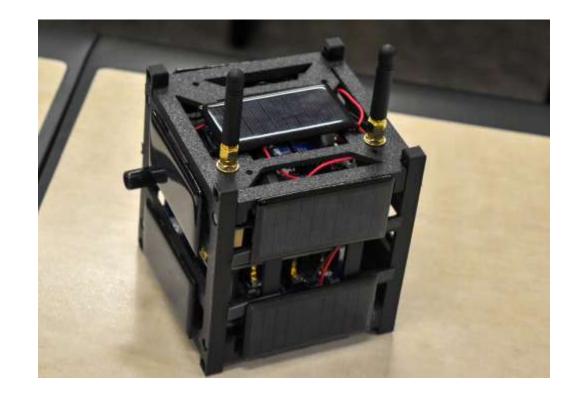
Our "motley crew"

- ☐ Dr. Kangkook Jee
- ☐ Dr. Robert Baumann (IEEE fellow)
- ☐ Timothy Sweet
- Me
- ☐ Special thanks: Alan Johnston KU2Y, Ron Dang K5SUS, Ethan Maher, Geonwoo Park, and Dr. Ovidiu Daescu
- An interdisciplinary effort for sure!

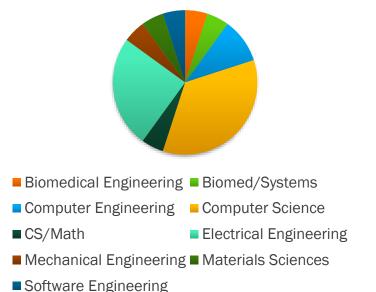

But why?

- We didn't want to do a typical, run-of-the-launchpad satellite workshop
- ☐ Different backgrounds: collaboration of academia, industry, and passion!
- Our partnership enabled interesting activities
- □ ...like cooking CubeSatSims in an X-ray chamber? (more on this later)
- Cybersecurity interests in mind

- ☐ A trove of information:
 https://CubeSatSim.org/
- □ 10 CubeSatSim kits purchased1 prototype, 6 for workshop
- ☐ Planning phase: gathering parts!
 - ☐ Tariffs, tariffs (June July 2025)
 - □ Alternative vendors in Alan's BOM were a lifesaver



- ☐ Planning phase: activities!
 - Excellent collection of activity guides from AMSAT's CubeSatSim team
 - https://github.com/alanbjohnston/CubeSat Sim/wiki/CubeSatSim-Activity-Guides
 - ☐ Fast-forwarding through RF fundamentals while dry-running (AFSK? BPSK?? CW???)
 - X-ray TID activity
 - ☐ In the next iteration we will surely try more activities!


- ☐ Planning phase: assembly!
 - ☐ So. Much. Soldering. And I loved it!
 - ☐ First prototype took me several hours spread out over ~2 days (my first time soldering).
 - Lots of help over the next week; really saved my life.
 - Word to the wise: sort out all parts beforehand (a lot to work with, especially with 6 kits).

Student demographics

Majors

- ☐ Interdisciplinary to the core.
- □ 2-3 students had ham licenses.
- We even received an application from faculty.
- Interest even in South Korea. One participant flew out from there.

Program	Count	
Bachelor	13	
Bachelor, Master	1	
Master	3	
Ph.D.	3	
Total	20	

The best satellite workshop at UTD yet

- ☐ A 3-day affair, each packed with activities and lectures
- ☐ Students assembled the models from pre-soldered circuit boards
- ☐ Ground station setup
- ☐ Lots of students' first time with RF

Day 1

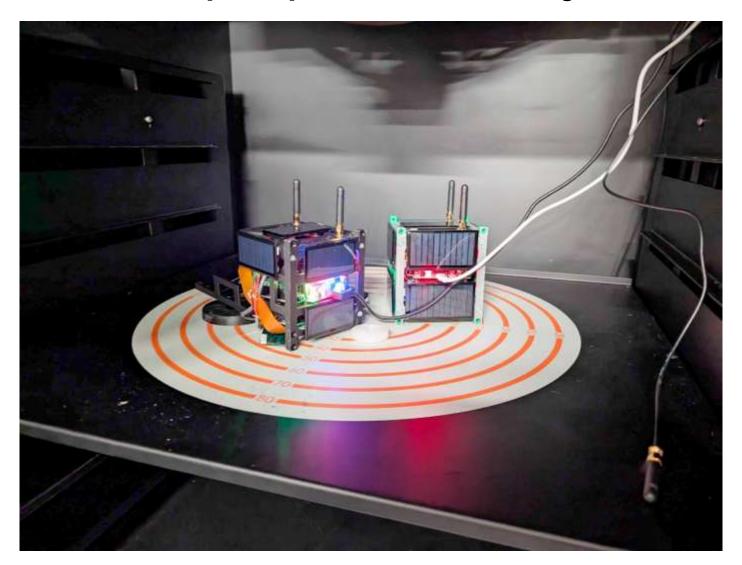
- ☐ Small satellite basics
- ☐ Orbital systems (LEO, MEO, GEO), TLE, satellite tracking
- □ Proliferation of COTS designs in modern small satellites
- ☐ The gap between cyber and aerospace
- Activity: CubeSatSim assembly!

An aside

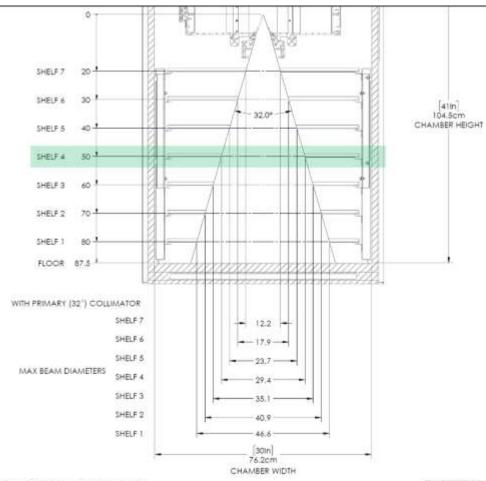
- ☐ Prior experience with CubeSats (IBM Endurance) ☐ Large gap between cyber and aerospace community's outlook, expectations Bridging the gap: motivation for organizing such a workshop! ☐ Cybersecurity research in space? ■ E.g.: robustness and reliability of COTS OBCs in harsh environments ■ The CubeSatSim uses COTS (2x Raspberry Pis + terrestrial electronics)
 - How will it fare when exposed to TID radiation?
 - □ Can we model actual CubeSat operations with it?

Day 2

- ☐ Activity: CubeSatSim assembly continued
- □ Activity: Ground station hardware and software set-up
- □ Students became familiarized with FoxTelem interface
- ☐ Activity: RF essentials
 - ☐ Students took selfies of themselves with the CubeSatSim and transmitted it via SSTV
- ☐ Activity: Advanced Telemetry


Day 3

- ☐ Change of venue -> UT Dallas Center for Harsh Environment Semiconductor Systems (CHESS)
- ☐ Space debris
- Radiation theory
- ☐ Impact of TID, SEEs on semiconductors
- ☐ Judicious use of shielding necessary
 - Balance between extra weight and effectiveness; diminishing returns


- Nitty-gritty of rad effects
- ☐ How do SEUs, SEFIs, SELs affect memory chips, for example?
- ☐ Radiation a very common cause for satellite mission failures
 - ☐ Rushed sat designs lead to uncaught mistakes
 - Deployment shock exposes workmanship flaws
 - □ "Biggest Threats to CubeSats = Not trading (mission) scope against [fixed] schedule and cost"
- We should study this at a system-wide level!
 - ☐ Is the CubeSatSim an acceptable proxy for a CubeSat?

A 1U CubeSat has standard dimensions of 10 cm x 10 cm x 11.35 cm. We want to irradiate two in parallel BUT we want to keep them as close as possible to the source (upper tray positions) to maximize dose rate.

Circle that describes two cubes would be ~ 12" (2*10cm*sqrt(2)) ~ 30cm

In one hour how much TID will we get?

Filter 1 cGy [Si] = rad [Si] Dose Rate (cGy/min) Position 50keV 80keV 160keV 320keV 30 83.00±0.73 208.29±2.13 555.17±5.31 849.35±8.22 40 45.83±0.45 115.49±0.98 304.13±3.01 469.33±1.24 28.83±0.05 192.66±1.80 297.22±0.75 50 72.19±0.66 60 19.55±0.15 130.17±1.08 207.86±0.45 48.60±0.46 80 10.89±0.02 27.54±0.060 73.74±0.17 113.60±0.87 From dosimetric analysis by Dr. Rodolfo Rodriguez-Davila = a characterization step - we halt the x-

Since we need to use the SHELF 4 (top is 1) position this is 50cm of spacing. If we do only 1 cube sat we can get > 50krad/hr! ~ 300 rad[Si] per minute Thus in 60 minutes we can ~ 18 krad[Si] And ~ 36krad in 2 hrs. 18 krad 5krad 5krad I 20 krad 5krad 🕽 15 krad 10 krad 5 krad

rays, you run your test program, then we

start the x-rays for another step interval.

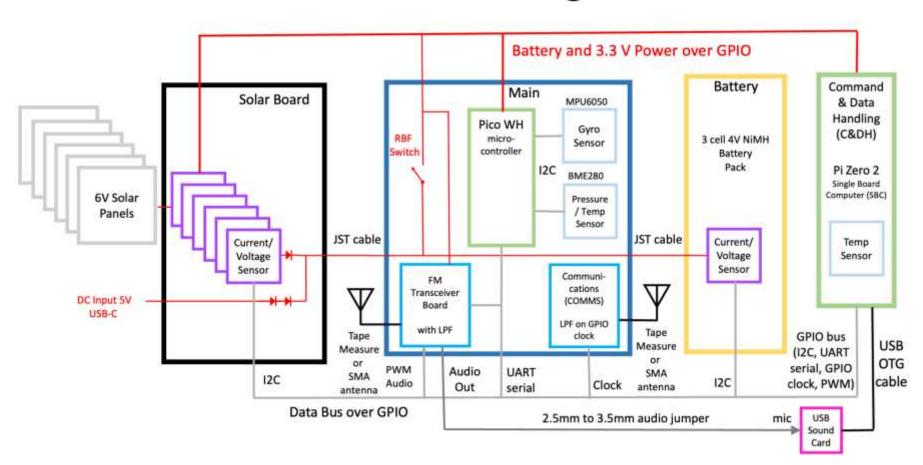
Attendance survey responses

- ☐ Students loved working with the CubeSatSim!
- ☐ A lot expressed interest in getting involved with AMSAT
- ☐ The (few) complaints were mostly about our logistical limitations
- ☐ Great educational activity for hams and non-hams alike
- ☐ SSTV's novelty was greatly appreciated

Attendance survey responses

- ☐ One student suggested making a GNU Radio plugin for ground station software
- Another student really wanted to acquire their own CubeSatSim kit to solder and build from scratch
- ☐ Students wanted more in-depth hands-on activities
 - ☐ using CAD to make a 3D model shell for the CubeSatSim
 - more in-depth RF activities
 - PCB design for RF applications

Future plans


- ☐ Short term: a smaller-scale workshop for high school students very soon
- Medium term: a newer and improved summer workshop with more activities for next year, especially with prior student feedback in mind
- ☐ Long term: offering semester-long coursework on satellites, especially with a cyber perspective, would be ideal
- ☐ Don't forget research!

The show must go on

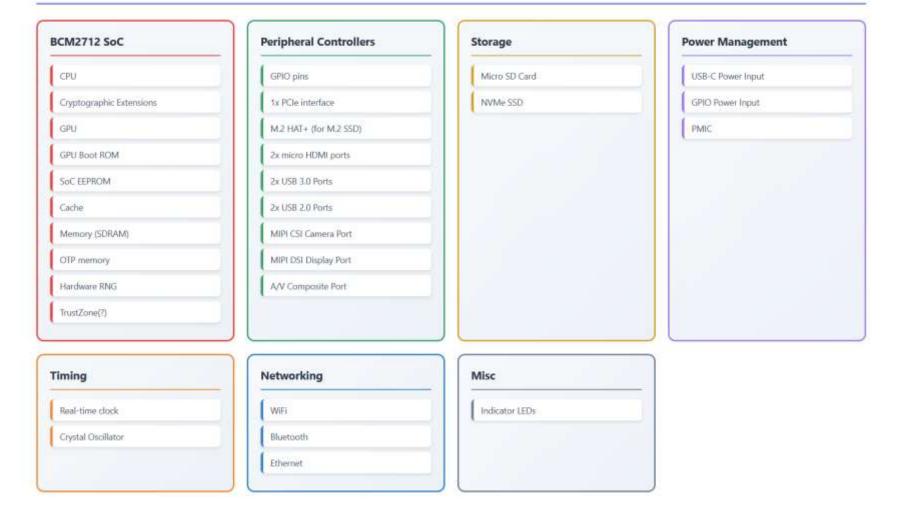
- ☐ More rigorous testing and data gathering with the CubeSatSim under radiation
- ☐ Simulate LEO TID radiation in X-ray chamber
- ☐ In general, people do components testing and avoid trying to obtain system-wide test data while subjecting a CubeSat to TID radiation!!
- Aim: Create a suite of software tests to capture parametric shifts in performance, latency, etc. and functional failures in the various components making up the CubeSat ecosystem while testing the system as a whole
 - What a mouthful!

Parts enumeration?

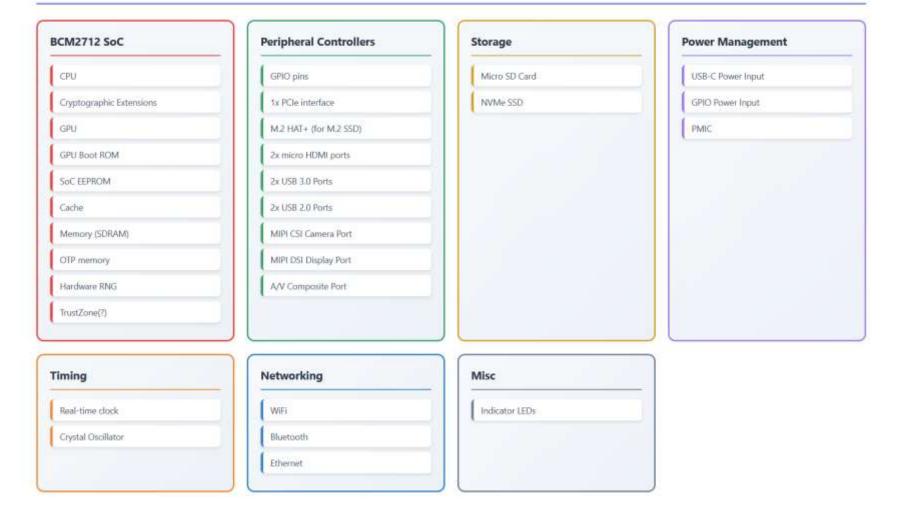
CubeSatSim Block Diagram v2.0

Raspberry Pi Pico W

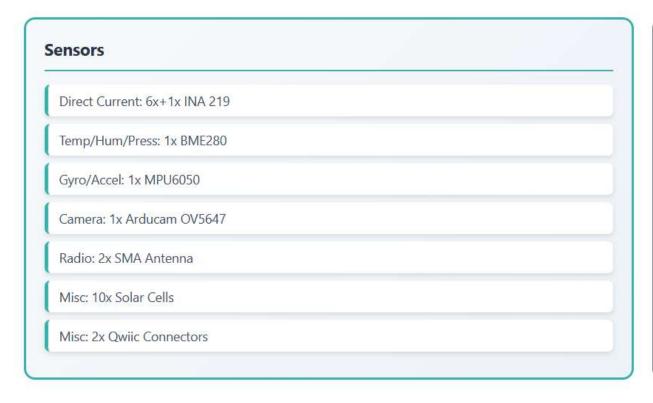
Onboard temp sensor


BOOTSEL button

Indicator LEDs

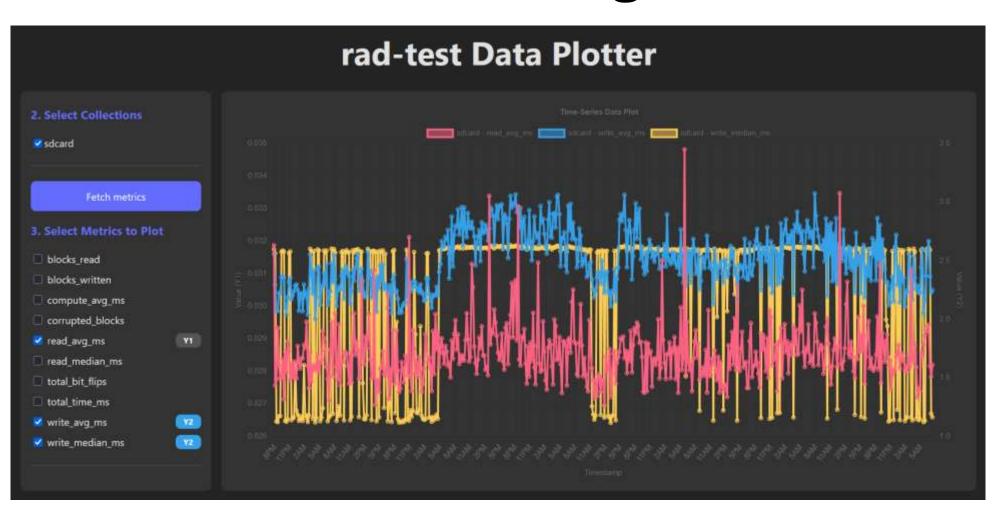

Raspberry Pi 4B

BCM2711 SoC	Peripheral Controllers	Storage	Power Management
СРИ	GPIO pins	Micro SD Card	USB-C Power Input
GPU	2x micro HDMI ports		GPIO Power Input
GPU Boot ROM	2x USB 3.0 Ports		PMIC
Soc EEPROM	2x USB 2.0 Ports		
Cache	MIPI CSI Carnera Port		
Memory (SDRAM)	MIPI DSI Display Port		
OTP memory	A/V Composite Port		
Hardware RNG			
Timing	Networking	Misc	
Crystal Oscillator	WiFi	Indicator LEDs	
	Bluetooth		
	Ethernet		


Raspberry Pi 5

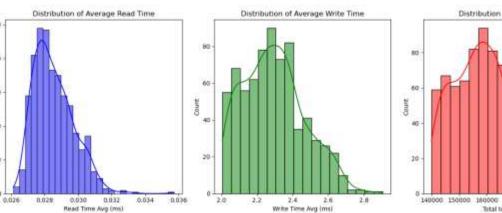
Raspberry Pi 5

Miscellaneous


What have I tested so far?

About the micro SD Card

- Out of all the parts enumerated, we have so far performed data gathering on the microSD card
 - Low hanging fruit?
 - You can view our data at monitor.syssec.space
- ☐ Testing of many more parts is to come!
- We eventually wish to whittle down to a minimal (tractable) set of components that can characterize radiation-caused failures in a satellite


The show must go on

Some statistical inference

- Average write time is the primary bottleneck. It is correlated almost perfectly with total test time. By comparison, average read time is quite weakly correlated to the total test time.
- ☐ Write operations in general show high variance. Avg time = 2.29 ms, but many outliers and periods of slower performance.
- □ Read performance is quite fast, relative to write, perhaps obviously. Avg time = 0.0285 ms. Much less variance than write, however it also has outliers with

unusually high read times.

Challenges

CubeSatSim challenges for research: Pi Zero too weak for reliably running heavy performance tests Possibly the Pico as well? Baremetal microcontroller, no OS either. Not realistic for an OBC. ■ Solution: switch out Pi Zero with Pi 4. More processors, more RAM, more better. CubeSatSim software will run on the Pi 4 with no major modifications. ■ No such "easy" replacement for the Pico yet ■ Eventual goal: switch to Pi 5. Will allow usage of more robust/secure M.2 SSD as compared to microSD for storage

☐ However, Pi 5 requires Debian 12. CubeSatSim software by default supports

only till Debian 11.

Thank you

Agastya Bose KJ5MSH

agastya@utdallas.edu
satworkshop.syssec.org/blog
cs.utdallas.edu