
* DRAFT *

Am1601
Programmer’s Reference
Issue 1.0.12
October 29, 2002

This document is subject to modification.

The latest version of this document can be found here:

http://www.amsat.org/amsat/projects/ips/Am1601.html

 AMSAT-BDA

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

 ii

Copyright (c) 2001-2002 AMSAT-DL

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software
Foundation; with no Invariant Sections, with no Front-Cover

Texts, and with no Back-Cover Texts.

A copy of the license is included in Appendix C entitled “GNU
Free Documentation License”.

This document is maintained by Paul C. L. Willmott, VP9MU.

Reports of errors should be sent to vp9mu@amsat.org

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

 iii

DOCUMENT HISTORY LOG

Status
(Baseline/
Revision/
Canceled)

Document
Revision

Effective
Date

Description

Baseline

1.0.0

October 9,
2001

Initial Draft by Paul Willmott (PCLW)
based upon notes by Lyle Johnson (LJ)
March 22, 2001

Revision 1.0.1 August 17,
2002

Information on jumps and branches added
by PCLW, based upon email from LJ
August 10, 2002.

Revision 1.0.2 August 18,
2002

Overflow flag conditions and machine
cycle info added to instruction
descriptions by LJ. Compares and Stack
Group instructions added. Corrections
to RSC and PSC references in
instruction descriptions, these grow up
now. References to T and S replaced by
P0 and P1 in all sections. Minor
formatting edits. PCLW

Revision 1.0.3 August 24,
2002

Corrections and edits, CMP & TST P1
added, I & IE flags added by LJ. Minor
formatting edits. GNU Free
Documentation License stuff added. RCMP
removed. Even addresses for 16 bit
opcodes. Refresh Register, Error
Counter and REFRESH, LSL, LSR, ASR,
ROL, ROR, CPL (COM), BIT, CLREF,
cLOADB, cSTOREB, cpLOADB, cpSTOREB, DI,
EI, PUSHREF, POPREF, RTS, EXECUTE,
EMULATE, PREPARE instructions added.
Traps and Vectors placeholder added.
I/O space details, IN & OUTB
instructions added. Changes to cpStore
description. icLOAD renamed cpLOAD.
PCLW

Revision 1.0.4 August 25,
2002

Formatting tidy-up, not shown in
markup. Consistency changes to
instruction descriptions. Additions to
BIT description. PCLW

Revision 1.0.5 August 27,
2002

Corrections, cIN and cOUTB changed to
cpINB and cpOUTB by LJ. Formating
changes. * DRAFT * Remove Before Flight
added. PCLW.

Revision 1.0.6 August 31,
2002

Miscellaneous edits. Extra stuff on
Interrupt/Reset. EA register added and
support. Z flag set added to cc based
instructions. sLOAD, sSTORE, uNLOAD,

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

 iv

sNLOAD, cNLOAD added. STOR renamed PTOR
to avoid confusion with STOREs. RTOS
renamed to RTOP. Some examples added.
PCLW

Revision 1.0.7 September
7, 2002

Corrections by LJ. Formatting tidy-up,
not shown in markup. PUSHREF, POPREF
opcode values changed. PUSHEA, POPEA
added. Some examples added, some
example placeholders removed. Minor
language edits. Vectors for stack
underflow added. PCLW

Revision 1.0.8 September
8, 2002

Corrections by LJ. Formatting tidy-up.
Page numbering changes. cBSR, POPEA
removed. PCLW

Revision 1.0.9 September
14, 2002

Misc corrections. EMULATE, PREPARE now
conditional on External Flag. EXECUTE
now conditional on Zero Flag. sBR added
as #4x. sBSR changed to #5x. FLAG now 2
byte instruction and moved to #FF.
uNLOAD, sNLOAD moved to #70, #71. PCLW
Corrections by LJ. More corrections by
PCLW. Assembler updated.

Revision 1.0.10 September
19, 2002

1 byte instructions changed to 2 byte
instructions. PC odd vector added. EF
in cc conditionals changed to not EF.
BIT renamed as MASK. CLREF, DI, EI,
POPREF, PUSHREF, POPEA, RTS deleted.
P0/P1 variants of SBC/SUB/CMP reversed
with RSBC/RSUB/RCMP. RCMP added back
in. DFX, 2BLIT added. Opcode numbers
changed everywhere. Corrections and
additions by LJ and PCLW. PUSH & POP
renamed PUSHPS & POPPS. PUSHRS & POPRS
added. SET & CLEAR added. XB (SWAPB)
added. EMULATE, EXECUTE. PREPARE &
REFRESH now cc conditional. All 16 bit
data structures must start at an even
address. All instructions except the
explicit byte manipulation instructions
expect to find a word at an even
address. Position of condition code cc
changed in opcodes/operands. cIN, cOUT,
cINB, cOUTB, cpIN, cpOUT added.
cpINB/cpOUTB opcodes changed.

Revision 1.0.11 September
21, 2002

opcodes for subtracts switched around.
FLAG is now a load rather than a push.
Minor edits. LJ/PCLW.

Revision 1.0.12 October 29,
2002

Changes to FLAG condition codes, and
cBR condition codes LJ. Copyright
changed from AMSAT-BDA to AMSAT-DL.
Minor edits. Am1601 Assembler and IPS-

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

 v

F1G source code added back in. PCLW.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

1 of 179

CHAPTER 1 - Am1601 Overview

“The Am1601 is a stack based CPU implemented in a FPGA. Its reason for existence is
to allow AMSAT access to an IPS-friendly radiation tolerant processor and to be in
control of the intellectual property associated with it.”

Lyle Johnson KK7P
March 22, 2001

Am1601 Emulator

An Am1601 emulator program for Windows NT, and a general user version of IPS to run
on the emulator is available. The purpose of the emulator is to aid the design and
development of the hardware Am1601, not to run "real-life" programs. IPS running on
the emulator is considerably slower than it would be on a real hardware machine. That
said the emulator is a very useful tool for debugging purposes.

It is made available to the general public for peer review purposes, and is provided "as
is".

The emulator program can be downloaded from here:

http://www.amsat.org/amsat/projects/ips/Am1601.html

Additional IPS software and documentation can be found here:

http://www.amsat.org/amsat/sats/ao40/ips.html

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

2 of 179

CHAPTER 2 - Am1601 Architecture

2.1 Memory Space

The memory in an Am1601 system is a sequence of up to 65536 bytes. A word is any
two consecutive bytes in memory. Words are stored in memory with the most significant
byte at the higher address. Instructions that manipulate 16-bit values expect to find data
in memory at even addresses. Only the explicit byte manipulation instructions are able to
access data stored at odd addresses.

2.2 Stacks

The Am1601 processor has two internal last-in first-out (LIFO) stacks; the parameter and
the return. The parameter stack is used to store data, whilst the return stack stores
return addresses etc. These two internal stacks are 16 bits wide and 16 elements deep.
These two internal stacks are implemented as bi-directional shift registers, e.g. a push
operation onto the parameter stack will cause P14 to be shifted to P15, P13 to P14 etc.
The Am1601 transparently handles stack overflow to external memory if necessary, with
the only penalty being execution time.

All arithmetic and logical operations are performed on the contents of the parameter
stack, with the results being deposited back onto the parameter stack.

Parameter Stack
Top-> P0

Second-> P1
Third-> P2

 P3
 P4
 P5
 P6
 P7
 P8
 P9
 P10
 P11
 P12
 P13
 P14
 P15

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

3 of 179

Return Stack

Top-> R0
 R1
 R2
 R3
 R4
 R5
 R6
 R7
 R8
 R9
 R10
 R11
 R12
 R13
 R14
 R15

2.3 Registers

In addition to the stack registers the Am1601 provides a program counter (PC) and a
number of IPS-friendly support registers.

2.3.1 Program Counter (PC). The program counter holds the 16-bit address of the
current instruction being fetched from memory. The PC is automatically incremented (by
2 or 4 depending upon the instruction being executed) after its contents have been
transferred to the address lines. When a program jump occurs, the new value is
automatically placed in the PC, overriding the incrementer. If the PC register is loaded
with an odd numbered address, then the instruction being executed is aborted, the PC
register is loaded with the address of the PC Odd Vector, and program execution
continues at the address now indicated by the PC register.

2.3.2 Flag Register (FLAGS) supplies information to the user regarding the status of the
Am1601 at any given time. The bit positions for each flag are shown below:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EC EC EC EC EC EC X X EE IE I E O S Z C
b5 b4 b3 b2 b1 b0

Where:

C = Carry Flag
Z = Zero Flag
S = Sign Flag
O = Overflow Flag
E = External Flag
I = Interrupt Flag
IE = Interrupt Enable

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

4 of 179

EE = EDAC Error
EC = EDAC Error Counter
X = Not Used

The bits in the least significant byte of the FLAGS register can be set or cleared in
software by the SET and CLEAR instructions. It is not recommended that the EE, E or I
flags be set in software.

2.3.2.1 Carry Flag (C). The carry bit is set or reset depending on the operation being
performed. For ADD instructions that generate a carry and SUBTRACT instructions that
generate a borrow, the Carry Flag will be set. The Carry Flag is reset by an ADD that
does not generate a carry and a SUBTRACT that doesn’t generate a borrow. This saved
carry facilitates software routines for extended precision arithmetic.

2.3.2.2 Zero Flag (Z). The Zero Flag is set or reset if the result generated by the
execution of certain instructions is zero. For arithmetic and logical operations, the Z flag
will be set to a 1 if the resulting word on the top of the parameter stack is zero. If the
word is not zero, the Z flag is reset to 0. Certain conditionally executed instructions
which may affect the parameter stack depth also set or clear the Z flag upon execution.

2.3.2.3 Sign Flag (S). The Sign Flag (S) stores the state of the most significant bit of the
word on the top of the parameter stack (Bit 15). When the Am1601 performs arithmetic
operations on signed numbers, binary two’s complement notation is used to represent
and process numeric information. A positive number is identified by a 0 in bit 15. A
negative number is identified by a 1. The binary equivalent of the magnitude of a positive
number is stored in bits 0 to 14 for a total range of 0 to 32767. A negative number is
represented by the two’s complement of the equivalent positive number. The total range
for negative numbers is –1 to –32768.

2.3.2.4 Overflow Flag (O). The Overflow Flag (O) is valid for binary two’s complement
operations only (signed). The Overflow Flag is set to 1 if an overflow occurred, 0
otherwise. If bit 15 of both operands are set to 1, and bit 15 of the result is 0, then an
overflow occurred. Likewise if bit 15 of both operands are set to 0, and bit 15 of the
result is 1, then an overflow occurred.

2.3.2.5 External Flag (E). The External Flag is a flip-flop that is set by an external event,
sampled at an I/O pin. It is cleared in software by the CLEAR instruction with the
appropriate mask.

2.3.2.6 Interrupt Flag (I). The Interrupt Flag is set when a maskable interrupt occurs. It is
cleared in software by the CLEAR instruction with the appropriate mask.

2.3.2.7 Interrupt Enable Flag (IE). The Interrupt Enable Flag is used to enable or disable
the maskable interrupt. It is manipulated in software by the SET and CLEAR instructions
with the appropriate mask. It is automatically cleared (disabled) in hardware when an
Interrupt is responded to. It must subsequently be enabled by software.

2.3.2.8 EDAC Error Flag (EE). The EDAC Error Flag is set when the EDAC sub-system
corrects a bit in memory. When an error is corrected, the EDAC Error Counter (EC) is
incremented, and the EDAC Error Address register (EA) is loaded with the address of

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

5 of 179

the byte or word in memory corrected. It is cleared in software by the CLEAR instruction
with the appropriate mask.

2.3.3 Pseudo Program Counter (PPC). The IPS pseudocode is executed by the inner
interpreter. This routine employs a pointer, the so-called pseudo-program counter. This
PPC points to the next pseudo-instruction to be executed in turn.

2.3.4 Header Pointer (HP). The IPS inner interpreter fetches the contents of the location
that the PPC points to and then increments the PPC by two. This fetched number is
called the header pointer (HP) and it points to the header of the routine to be executed.

2.3.5 Parameter Stack Pointer (PSP). The parameter stack pointer holds the address in
memory of the top of the parameter stack overflow area. The overflow area is only used
if the parameter stack contains more than 16 entries. When a value is pushed onto the
overflow area, the Parameter Stack Pointer is post-decremented by 2. When a value is
popped from the overflow area, the Parameter Stack Pointer is pre-incremented by 2.
The Parameter Stack Pointer must be initialised to an even address by software.

2.3.6 Parameter Stack Counter (PSC). The parameter stack counter is an up/down
counter that is incremented every time a push operation on the parameter stack occurs,
and is decremented every time a pop operation on the parameter stack occurs. It allows
the user to inspect the number of items on the parameter stack. It is also used to
implement the parameter stack hardware overflow/underflow mechanism. This register is
initialized to zero after a Reset. In the event of an underflow of the parameter stack (PSC
decrements to #FFFF), the processor aborts the instruction currently being executed.
Then the contents of the Program Counter are pushed onto the return stack. The PC
register is then loaded with the address of the Parameter Stack Underflow Vector
(#0008) and points to the next instruction to be executed.

2.3.7 Return Stack Pointer (RSP). The return stack pointer holds the address in memory
of the top of the return stack overflow area. The overflow area is only used if the return
stack contains more than 16 entries. When a value is pushed onto the overflow area, the
Return Stack Pointer is post-decremented by 2. When a value is popped from the
overflow area, the Return Stack Pointer is pre-incremented by 2. The Return Stack
Pointer must be initialised to an even address by software.

2.3.8 Return Stack Counter (RSC). The return stack counter is an up/down counter that
is incremented every time a push operation on the return stack occurs, and is
decremented every time a pop operation on the return stack occurs. It allows the user to
inspect the number of items on the return stack. It is also used to implement the return
stack hardware overflow/underflow mechanism. This register is initialized to zero after a
Reset. In the event of an underflow of the return stack (RSC decrements to #FFFF), the
processor aborts the instruction currently being executed. Then the contents of the
Program Counter are pushed onto the return stack. The PC register is then loaded with
the address of the Return Stack Underflow Vector (#0004) and points to the next
instruction to be executed.

2.3.9 Refresh Register (RR). The refresh register contains the address of the next
memory location to be refreshed. This is used by the REFRESH instruction to implement
the EDAC memory wash. The RR register is initialised to #0000 upon reset.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

6 of 179

2.3.10 EDAC Error Address (EA). This register holds the address of the last byte or word
in memory to be corrected by the EDAC sub-system. The EA register retains its contents
through a reset.

2.4 Operand Notation

2.4.1 The following notation is used in the instruction descriptions:

 1). P0 specifies the top register of the parameter stack.

 2). (P0) specifies the contents of memory at the location addressed by
 the contents of the P0 register.

 3). R0 specifies the top register of the return stack.

 4). uN specifies a one byte value in the range 0 to 255.

5). sN specifies a one byte signed value in the range –128 to 127.

 6). abc specifies a12 bit absolute address in the range #0000 to #0FFF.
In the operand binary descriptions the “a” represents the high order
nibble, and “c” the lowest order nibble.

7). efg specifies a 12 bit signed displacement in the range –2048 to 2047, bit

11 (high order bit) contains the sign. In the operand binary descriptions
the “e” represents the high order nibble, and “g” the lowest order nibble.

 8). cc specifies a condition code.

 9). nnnn specifies a 16 bit value in the range 0 to 65535 (#0000 to #FFFF).

10). eeee specifies a 16 bit signed displacement in the range –32768 to
32767.

 11). ee specifies an 8 bit signed displacement in the range –128

to 127.

 12). s specifies any of the uN, sN or P1 operands. In the case of the SBC,

SUB, and CMP instructions s specifies any of the uN, sN or P0 operands.

 13). qq specifies any of the PC, PPC, HP, FLAGS, PSP, PSC, RSP,

RSC, EA or RR registers.

14). Hexadecimal numbers are prefixed in this guide and the assembler
by the # character, as per IPS convention.

 15). <x> specifies a nibble (4 bits), where x can be any character. e.g. for

a byte containing #FE, <F> is the high order nibble, and <E> the lower
order nibble.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

7 of 179

16). MSB means the Most Significant Byte of a word. LSB means the least
significant byte of a word.

17). pppp specifies a 16 bit I/O port address in the range 0 to 65535 (#0000 to

#FFFF).

18). b0, b1 ... b15 specify an individual bit; b0 specifies bit 0, the lowest

significant bit.

 19). y specifies either of the uN or P0 operands.

20). dest <- expr means that the expression expr is loaded into the destination
dest. The destination can by a register, memory location, I/O port, or bit in
any of the foregoing.

21). P0 <<- expr means that the expression expr is pushed onto the top of the

parameter stack. Similarly, R0 <<- expr means that the exepression expr
is pushed onto the top of the return stack.

22). dest <-> dest means that the contents of the two destinations are

exchanged, i.e. swapped.

23). The enclosing of an expression wholly in parentheses indicates a
memory address. The contents of the memory address equivalent to the
expression value will be used as the operand value.

 24). A binary literal value is represented by prefixing the value by "B" e.g.

B0000000000000000.

25). m specifies a bit mask. Within the mask all bits are clear except the one

identified by the value of m.

2.5 All instructions and all 16-bit data structures must be stored in a memory location
with an even address.

2.6 Traps & Vectors

2.6.1 The following addresses are set aside for traps and vectors:

 #0000 Reset
 #0004 Return Stack Underflow
 #0008 Parameter Stack Underflow
 #000C PC Odd Vector
 #0010 Maskable Interrupt

2.6.2 An external reset (RST) causes the processor to complete the instruction
currently being executed. The RR, PSC and RSC registers are initialised to #0000. All
other registers are remain unchanged. Then the Program Counter (PC) is then loaded
with the address of the Reset Vector (#0000) and points to the next instruction to be
executed.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

8 of 179

2.6.3 An external interrupt (INT) causes the maskable interrupt to be disabled. Then
the processor completes the instruction currently being executed. Then the contents of
the Program Counter are pushed onto the return stack. The PC register is then loaded
with the address of the Maskable Interrupt Vector (#0010) and points to the next
instruction to be executed.

2.6.4 In the event of an underflow of the return stack (RSC decrements to #FFFF), the
processor aborts the instruction currently being executed. Then the contents of the
Program Counter are pushed onto the return stack. The PC register is then loaded with
the address of the Return Stack Underflow Vector (#0004) and points to the next
instruction to be executed.

2.6.5 In the event of an underflow of the parameter stack (PSC decrements to #FFFF),
the processor aborts the instruction currently being executed. Then the contents of the
Program Counter are pushed onto the return stack. The PC register is then loaded with
the address of the Parameter Stack Underflow Vector (#0008) and points to the next
instruction to be executed.

2.6.6 In the event of the Program Counter Register (PC) being loaded with an odd
value, then the current instruction being executed is aborted. The PC register is loaded
with the PC Odd Vector (#000C), and program execution continues at the location
indicated by the new contents of the PC register.

2.7 Input / Output (I/O)

2.7.1 The Am1601 has a separate I/O space from memory. This space is a bank of
65536 I/O ports addressed as #0000 to #FFFF. The ports are 8 bits wide. 16 bit ports
can be accommodated at even I/O port addresses. The cIN, cOUT, cINB, cOUTB, cpIN,
cpOUT, cpINB and cpOUTB instructions are used to read from and write to the I/O ports.

2.8 Undefined Opcodes

2.8.1 The opcode values for which instructions have not been defined, are just that
..."undefined and unpredictable".

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

9 of 179

CHAPTER 3 - Am1601 Instruction Set

INTRODUCTION:

This chapter describes each Am1601 opcode (instruction) in detail. The opcodes are
largely presented in alphabetical order, one per page. Each instruction is introduced by
its mnemonic opcode and symbolic operations. Then follows a brief description,
operation, valid operand combinations, machine code, detailed description, condition bits
affected, and one or more examples.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

10 of 179

2BLIT

Operation: P0 <<- (PPC)
 PSC <- PSC + 1
 PPC <- PPC + 2
 PC <- PC + 2

Format:

2BLIT

#FB

1

1

1

1

1

1

0

1

#00

0

0

0

0

0

0

0

0

Description:

This instruction fetches a 16-bit word at the address indicated by the Pseudo Program
Counter Register (PPC) and pushes it onto the top of the parameter stack (P0). The
PPC register is incremented by 2, and program execution continues at the next
instruction in memory (PC + 2).

M CYCLES: 4

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

11 of 179

ADC

Operation: if operand is uN or sN

P0 <- P0 + s + C
 PC <- PC + 2

if operand is P1
 P0 <- P0 + P1 + C

 PSC <- PSC – 1
PC <- PC + 2

Format:

[uN|sN] s ADC

The s operand is any of uN, sN or P1. These various possible opcode-operand
combinations are assembled as follows in the object code:

uN uN ADC

#A1

1

0

1

0

0

0

0

1

8-bit unsigned value, this is extended by the processor prior to the operation by filling
bits 8 – 15 with zeroes.

<

u

N

>

sN sN ADC

#B1

1

0

1

1

0

0

0

1

8-bit signed value, this is extended by the processor prior to the operation by filling bits 8
– 15 with the most significant bit of the operand.

<

s

N

>

P1 ADC

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

12 of 179

#C0

1

1

0

0

0

0

0

0

#10

0

0

0

1

0

0

0

0

Description:

The byte or word specified by the s operand, along with the Carry Flag (“C” in the Flags
register) are added to the contents of the top register of the parameter stack (P0); the
result replaces the contents of P0. In the case of the P1 variant, the top two entries on
the parameter stack are popped and the result pushed onto the top of the parameter
stack.

M CYCLES: 2

Condition Bits Affected:

C: Set if carry from Bit 15; reset otherwise

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

O: Set if the signed result is an overflow; reset otherwise

Example:

If the P0 register contains #0016, the Carry Flag is set, the P1 register contains #0010,
after the execution of

 P1 ADC

the P0 register will contain #0027.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

13 of 179

ADD

Operation: if operand is uN or sN

P0 <- P0 + s
 PC <- PC + 2

if operand P1
P0 <- P0 + P1
PSC <- PSC - 1
PC <- PC + 2

Format:

[uN|sN] s ADD

The s operand is any of uN, sN or P1. These various possible opcode-operand
combinations are assembled as follows in the object code:

uN uN ADD

#A0

1

0

1

0

0

0

0

0

8-bit unsigned value, this is extended by the processor prior to the operation by filling
bits 8 – 15 with zeroes.

<

u

N

>

sN sN ADD

#B0

1

0

1

1

0

0

0

0

8-bit signed value, this is extended by the processor prior to the operation by filling
bits 8 – 15 with the most significant bit of the operand.

<

s

N

>

P1 ADD

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

14 of 179

#C0

1

1

0

0

0

0

0

0

#00

0

0

0

0

0

0

0

0

Description:

The byte or word specified by the s operand is added to the contents of the top register
of the parameter stack (P0); the result replaces the contents of P0. In the case of the P1
variant, the top two entries on the parameter stack are popped and the result pushed
onto the top of the parameter stack.

M CYCLES: 2

Condition Bits Affected:

C: Set if carry from Bit 15; reset otherwise

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

O: Set if the signed result is an overflow; reset otherwise

Example:

If the contents of the P0 register are #00A0, and the uN operand has the value #02, after
the execution of

 #02 uN ADD

the P0 register will contain #00A2.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

15 of 179

AND

Operation: if operand is uN or sN

P0 <- P0 AND s
 PC <- PC + 2

if operand is P1
 P0 <- P0 AND P1
 PSC <- PSC - 1

PC <- PC + 2

Format:

[uN|sN] s AND

The s operand is any of uN, sN or P1. These various possible opcode-operand
combinations are assembled as follows in the object code:

uN uN AND

#A6

1

0

1

0

0

1

1

0

8-bit unsigned value, this is extended by the processor prior to the operation by filling
bits 8 – 15 with zeroes.

<

u

N

>

sN sN AND

#B6

1

0

1

1

0

1

1

0

8-bit signed value, this is extended by the processor prior to the operation by filling
bits 8 – 15 with the most significant bit of the operand.

<

s

N

>

P1 AND

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

16 of 179

#C0

1

1

0

0

0

0

0

0

#60

0

1

1

0

0

0

0

0

Description:

A logical AND operation, bit by bit, is performed between the byte or word specified by
the s operand and the contents of the top register of the parameter stack (P0); the result
replaces the contents of P0. In the case of the P1 variant, the top two entries on the
parameter stack are popped and the result pushed onto the top of the parameter stack.

M CYCLES: 2

Condition Bits Affected:

C: Reset

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

O: Reset.

Example:

If the P0 register contains #007B (B0000000001111011) and the P1 register contains
#00C3 (B0000000011000011) after the execution of

P1 AND

the P0 register will contain #0043 (B0000000001000011).

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

17 of 179

ASR

Operation: P0 <- P0, C<b0, b0<b1, b1<-b2 .. b14<b15, b15<b15
 PC <- PC + 2

Format:

ASR

#C2

1

1

0

0

0

0

1

0

#90

1

0

0

1

0

0

0

0

Description:

An arithmetic shift right is performed on the contents of the top register of the parameter
stack (P0). The content of bit 15 (b15) is copied into bit 14 (b14); the previous content of
bit 14 is copied into bit 13; this pattern is continued throughout the word. The content of
bit 0 (b0) is copied into the Carry Flag ("C" in the FLAGS register), and the previous
content of bit 15 (b15) is unchanged. Bit 0 (b0) s the least significant bit.

M CYCLES: 2

Condition Bits Affected:

C: Data from Bit 0 of previous contents of P0

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

O: Reset.

Example:

If the P0 register contains #8038 (B1000000000111000) after the execution of

 ASR

the contents of the P0 register will be #C01C (B1100000000011100) and the Carry Flag
will contain 0.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

18 of 179

 cBR

Operation: if condition cc = 0
 PC <- PC + 2

 if condition cc = 1
 PC <- PC + ee + 2

Format:

The cc operand is any of the condition codes as defined for the FLAG instruction. ee is
the destination displacement.

ee cc cBR

#9<cc>

1

0

0

1

<

c

c

>

ee

<

e

e

>

Description:

This instruction provides for conditional branching. If the condition cc is met then the
destination displacement (ee) is added to the Program Counter (PC) + 2 and the next
instruction is fetched from the location designated by the new contents of the PC. This
jump is measured from the address of the instruction opcode + 2 and has a range of –
128 to 127. If the condition is not met then the address of the next instruction in memory
(PC + 2) is loaded into the PC register and points to the next program instruction to be
executed.

The assembler provides the following definitions to aid the computation of jump offsets:

cc cBRbegin Stores opcode and leaves address of the place to insert the jump

offset on top of the IPS-X parameter stack.

cBRelse Calculates and inserts the required jump offset into the address
 previously deposited by cBRbegin on the top of the IPS-X

parameter stack. The address is popped and discarded. Then an
AL cBR is assembled into the code, and the address of the place
to insert the jump offset is pushed onto the top of the IPS-X
parameter stack.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

19 of 179

cBRend Calculates and inserts the required jump offset into the address
previously deposited by cBRbegin or cBRelse. The address is
popped and discarded.

M CYCLES: 3 if branch taken; 2 if branch not taken.

Condition Bits Affected:

None

Example:

To jump forward 6 locations from address #0480 if the Z flag is set, the following
assembly language statement is used:

4 EQ cBR

The resulting object code and final PC value is shown below:

Location Contents

480 #90
481 #04
482
483
484
485
486 <- PC after jump

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

20 of 179

sBR

Operation: PC <- PC + efg + 2

Format:

efg sBR

#4<e>

0

1

0

0

<

e

>

<f><g>

<

f

>

<

g

>

Description:

This instruction provides for unconditional branching. The value of the displacement efg
is added to the contents of the Program Counter (PC) + 2 and the next instruction is
fetched from the location designated by the new contents of the PC. This jump is
measured from the address of the instruction opcode + 2 and has a range of –2048 to
2047.

The assembler provides the following definitions to aid the computation of jump offsets:

sBRbegin Stores opcode and leaves address of the place to insert the jump

offset on top of the IPS-X parameter stack.

sBRcomplete Calculates and inserts the required jump offset into the address

previously deposited by sBRbegin. The address is popped and
discarded.

M CYCLES: 3

Condition Bits Affected:

None

Example:

To jump to the address #0108, the following assembly language statement is used:

#006 sBR

The resulting object code and final PC value is shown below:

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

21 of 179

Location Contents
100 #40
101 #06
102
103
104
105
106
107
108 <- PC after jump

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

22 of 179

cpBSR

Operation: if condition cc = 0
 PSC <- PSC - 1
 PC <- PC + 2

if condition cc = 1
 R0 <- PC + 2
 RSC <- RSC + 1
 PC <- PC + P0 + 4
 PSC <- PSC - 1

Format:

cc cpBSR

The cc operand is any of the condition codes as defined for the FLAG instruction.

cc cpBSR

#8F

1

0

0

0

1

1

1

1

#0<cc>

0

0

0

0

<

c

c

>

Description:

This instruction provides for conditional branching to a subroutine. If the condition cc is
met then the address of the next instruction in memory (PC + 2) is pushed onto the
return stack. The displacement value is popped off the parameter stack and added to the
contents of the Program Counter (PC) + 4 and the next instruction is fetched from the
location designated by the new contents of the PC. This jump is measured from the
address of the instruction opcode + 4 and has a range of –32768 to 32767. If the
condition is not met then the top of the parameter stack is popped and the address of the
next instruction in memory (PC + 2) is loaded into the PC register and points to the next
program instruction to be executed.

M CYCLES: 3 if branch taken; 2 if branch not taken.

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

23 of 179

Example:

If the top register of the parameter stack (P0) contains 4. To jump to a subroutine
located at the displacement indicated by the P0 register if the Z flag is set, the following
assembly language statement is used:

EQ cpBSR

The resulting object code and final PC value is shown below:

Location Contents

480 #8F
481 #00
482
483
484
485
486 <- PC after jump, R0 <<- PC + 2

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

24 of 179

sBSR

Operation: R0 <- PC + 2
 RSC <- RSC + 1
 PC <- PC + efg + 2

Format:

efg sBSR

#5<e>

0

1

0

1

<

e

>

<f><g>

<

f

>

<

g

>

Description:

This instruction provides for unconditional branching to a subroutine. The address of the
 next instruction to be executed is pushed onto the return stack. Then the value of the
displacement efg is added to the contents of the Program Counter (PC) + 2 and the next
instruction is fetched from the location designated by the new contents of the PC. This
jump is measured from the address of the instruction opcode + 2 and has a range of
–2048 to 2047.

cc sBSRbegin Stores opcode and leaves address of the place to insert the jump

offset on top of the IPS-X parameter stack.

sBSRcomplete Calculates and inserts the required jump offset into the address

previously deposited by sBSRbegin. The address is popped and
discarded.

M CYCLES: 3

Condition Bits Affected:

None

Example:

To jump to a subroutine located at address #0108, the following assembly language
statement is used:

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

25 of 179

#008 sBSR

The resulting object code and final PC value is shown below:

Location Contents
100 #50
101 #06
102
103
104
105
106
107
108 <- PC after jump, R0 <<- PC + 2

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

26 of 179

CLEAR

Operation: FLAGS <<- FLAGS AND NOT MASK(m)
 PC <- PC + 2

Format:

m CLEAR

#D5

1

1

0

1

0

1

0

1

#<m>0

<

m

>

0

0

0

0

Description:

The bit corresponding to the value of m in the FLAGS register is cleared according to the
following table:

FLAGS bit m

C 0000 #00
Z 0001 #01
S 0010 #02
O 0011 #03
E 0100 #04
I 0101 #05
IE 0110 #06
EE 0111 #07

M CYCLES: 2

Condition Bits Affected:

The bit indicated by the m operand is cleared.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

27 of 179

CMP

Operation: if operand is uN or sN

P0 - s
 PC <- PC + 2

if operand is P0
 P1 – P0

PC <- PC + 2

Format:

[uN|sN] s CMP

The s operand is any of uN , sN or P0. These various possible opcode-operand
combinations are assembled as follows in the object code:

uN uN CMP

#AB

1

0

1

0

1

0

1

1

8-bit unsigned value, this is extended by the processor prior to the operation by filling
bits 8 – 15 with zeroes.

<

u

N

>

sN sN CMP

#BB

1

0

1

1

1

0

1

1

8-bit signed value, this is extended by the processor prior to the operation by filling
bits 8 – 15 with the most significant bit of the operand.

<

s

N

>

P0 CMP

#C0

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

28 of 179

1

1

0

0

0

0

0

0

#A0

1

0

1

0

0

0

0

0

Description:

In the case of the sN or uN variants the word specified by the s operand is compared to
(subtracted from) the contents of the top register of the parameter stack (P0) and the
condition flags are set. In the case of the P0 variant the top register of the parameter
stack (P0) is compared to (subtracted from) the second register of the parameter stack
(P1) and the condition flags are set. The contents of the parameter stack remain
unchanged.

M CYCLES: 2

Condition Bits Affected:

C: Set if there was a borrow; reset otherwise

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

0: Set if signed overflow; reset otherwise

Example:

If the P0 register contains #FF45 and the P1 register contains #FF45, then after the
execution of

 P0 CMP

the Zero Flag (Z) will be set

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

29 of 179

CPL

Operation: P0 <- 1 - P0
 PC <- PC + 2

Format:

CPL

#C0

1

1

0

0

0

0

0

0

#D0

1

1

0

1

0

0

0

0

Description:

The contents of the top register of the parameter stack (P0) are inverted (1's
complement). This is the same as subtracting the contents of the P0 register from 1.

M CYCLES: 2

Condition Bits Affected:

C: Set if P0 was not #0001 before operation; reset otherwise.

S: Set if result is negative; reset otherwise.

Z: Set if result is 0; reset otherwise.

O: Reset.

Example:

If the contents of the P0 register are #00B4 (B0000000010110100), after the execution
of

 CPL

the P0 register will be #FF4B (B1111111101001011).

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

30 of 179

DEL

Operation: PSC <- PSC - 1
 PC <- PC + 2

Format:

DEL

#C1

1

1

0

0

0

0

0

1

#10

0

0

0

1

0

0

0

0

Description:

The top entry of the parameter stack is popped and discarded.

M CYCLES: 2

Condition Bits Affected:

None

Example:

 P2 P1 P0
Before operation: 8 5 12
After operation: - 8 5

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

31 of 179

DFX

Operation: R0 <<- PPC
 RSC <- RSC + 1
 PPC <- HP
 PC <- PC + 2

Format:

DFX

#F8

1

1

1

1

1

0

0

0

#00

0

0

0

0

0

0

0

0

Description:

Definition Executive: the contents of the Pseudo Program Counter Register (PPC) are
pushed onto the top of the return stack (R0), then the contents of the PPC register are
replaced by the contents of the Header Pointer Register (HP). Program execution
continues at the next instruction in memory (PC + 2).

M CYCLES: 3

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

32 of 179

DUPL

Operation: P0 <<- P0
 PSC <- PSC + 1
 PC <- PC + 2

Format:

DUPL

#C1

1

1

0

0

0

0

0

1

#00

0

0

0

0

0

0

0

0

Description:

The contents of the top register of the parameter stack (P0) are pushed onto the top of
the stack, i.e. duplicated.

M CYCLES: 2

Condition Bits Affected:

None

Example:

 P2 P1 P0
Before operation: 5 12
After operation: 5 12 12

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

33 of 179

EOR

Operation: if operand is uN or sN

P0 <- P0 EOR s
 PC <- PC + 2

if operand is P1
 P0 <- P0 EOR P1
 PSC <- PSC - 1

PC <- PC + 2

Format:

[uN|sN] s EOR

The s operand is any of uN, sN or P1. These various possible opcode-operand
combinations are assembled as follows in the object code:

uN uN EOR

#A8

1

0

1

0

1

0

0

0

8-bit unsigned value, this is extended by the processor prior to the operation by filling
bits 8 – 15 with zeroes.

<

u

N

>

sN sN EOR

#B8

1

0

1

1

1

0

0

0

8-bit signed value, this is extended by the processor prior to the operation by filling
bits 8 – 15 with the most significant bit of the operand.

<

s

N

>

P1 EOR

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

34 of 179

#C0

1

1

0

0

0

0

0

0

#80

1

0

0

0

0

0

0

0

Description:

A logical exclusive-OR operation, bit by bit, is performed between the byte or word
specified by the s operand and the contents of the top register of the parameter stack
(P0); the result replaces the contents of P0. In the case of the P1 variant, the top two
entries on the parameter stack are popped and the result pushed onto the top of the
parameter stack.

M CYCLES: 2

Condition Bits Affected:

C: Reset

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

O: Reset

Example:

If the P0 register contains #0096 (B0000000010010110), and the operand uN has the
value #5D (B01011101), then after the execution of

 #0096 uN EOR

the P0 register will contain #00CB (B0000000011001011).

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

35 of 179

EMULATE (not available in prototype)

Operation: if condition cc = 1

HP <- (PPC)
 PPC <- PPC + 2
 PC <- (HP)
 HP <- HP + 2
 if condition cc = 0
 PC <- PC + 2

Format:

cc EMULATE

The cc operand is any of the condition codes as defined for the FLAG instruction.

cc EMULATE

#F0

1

1

1

1

0

0

0

0

#0<cc>

0

0

0

0

<

c

c

>

Description:

If the condition cc is met, then EMULATE loads the Header Pointer Register (HP) with
the contents of the word in memory at the address indicated by the Pseudo Program
Counter Register (PPC). The PPC register is incremented by 2. The Program Counter
(PC) is then loaded with the address stored at the location indicated by the new contents
of the HP register. The HP register is then incremented by 2. Program execution
continues from the location now stored in the PC register. If the condition cc is not met
then program execution continues at the next instruction (PC + 2).

M CYCLES: 5 cycles if cc, 2 cycles if not cc

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

36 of 179

EXECUTE

Operation: if condition cc = 1

 PC <- (HP)
 HP <- HP + 2
 if condition cc = 0
 PC <- PC + 2

Format:

cc EXECUTE

The cc operand is any of the condition codes as defined for the FLAG instruction.

cc EXECUTE

#F1

1

1

1

1

0

0

0

1

#0<cc>

0

0

0

0

<

c

c

>

Description:

If the condition cc is met then the Program Counter (PC) is loaded with the address
stored at the location indicated by the contents of the Header Pointer Register (HP). The
HP register is then incremented by 2. Program execution continues from the location
now stored in the PC register. If the condition cc is not met then program execution
continues at the next instruction in memory (PC + 2).

M CYCLES: 3 cycles if cc; 2 cycles if not cc

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

37 of 179

FLAG

Operation: if condition cc = 0
P0 <<- #0000
PC <- PC + 2

if condition cc = 1

P0 <<-#0001
 PC <- PC + 2

Format:

cc FLAG

#FF

1

1

1

1

1

1

1

1

#0<cc>

0

0

0

0

<

c

c

>

Description:

If the condition cc is met, then #0001 replaces the contents of the top register of the
parameter stack (P0). If the condition is not met then #0000 replaces the contents of the
P0 register.

Condition Codes

#0 EQ Equal, Zero Flag (Z) = 1

#1 NE Not Equal, Zero Flag (Z) = 0

#2 CS/HI Carry Set/Higher, Carry Flag (C) = 1

#3 CC/LS Carry Clear/Lower or Same, Carry Flag (C) = 0

#4 MI Minus, Sign Flag (S) = 1

#5 PL Plus, Sign Flag (S) = 0

#6 VS Overflow Flag (O) = 1

#7 VC Overflow Flag (O) = 0

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

38 of 179

#8 HS Higher or Same, Zero Flag (Z) = 1 or Carry Flag (C) = 1

#9 LO Lower, Zero Flag (Z) = 0 and Carry Flag (C) = 0

#A GE Greater Than or Equal,

(Sign Flag (S) = 1 and Overflow Flag (O) = 1) or
(Sign Flag (S) = 0 and Overflow Flag (O) = 0)

#B LT Less Than,

(Sign Flag (S) = 1 and Overflow Flag (O) = 0) or
(Sign Flag (S) = 0 and Overflow Flag (O) = 1)

#C GT Greater Than,
 Zero Flag (Z) = 0 and

((Sign Flag (S) = 1 and Overflow Flag (O) = 1) or
(Sign Flag (S) = 0 and Overflow Flag (O) = 0))

#D LE Less Than or Equal,
 Zero Flag (Z) = 1 or

((Sign Flag (S) = 1 and Overflow Flag (O) = 0) or
(Sign Flag (S) = 0 and Overflow Flag (O) = 1))

#E AL Always (true)

#F NEF External Flag (E) = 0. The External Flag (E) is a flip flop

that can be set by an external event, this is intended to support
the IPS “pseudo interrupt”.

M CYCLES: 2

Condition Bits Affected:

None

Example:

If the Zero Flag (Z) contains 1, then after the execution of

 EQ FLAG

the P0 register will contain #0001.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

39 of 179

IDX

Operation: P0 <<- R0
 PSC <- PSC + 1
 PC <- PC + 2

Format:

IDX

#C1

1

1

0

0

0

0

0

1

#80

1

0

0

0

0

0

0

0

Description:

The contents of the top register of the return stack (R0) are pushed onto the top of the
parameter stack. The return stack remains unchanged.

M CYCLES: 2

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

40 of 179

cIN

Operation: if condition cc = 0
 Z <- 0
 PC <- PC + 4

if condition cc = 1
 P0 <<- (nnnn)
 Z <- 1
 PSC <- PSC + 1
 PC <- PC + 4

Format:

nnnn cc cIN

The cc operand is any of the condition codes as defined for the FLAG instruction. nnnn
is the address of the load value.

nnnn cc cIN

#E2

1

1

1

0

0

0

1

0

#0<cc>

0

0

0

0

<

c

c

>

LSB nnnn

<

n

n

>

MSB nnnn

<

n

n

>

Description:

If the condition cc is met then the value of the input port at the I/O address indicated by
the operand nnnn is pushed onto the top of the parameter stack. Execution continues at
the instruction following the operand nnnn in memory. If the condition is not met then the

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

41 of 179

address of the instruction following the operand nnnn in memory (PC + 4) is loaded into
the PC register and points to the next program instruction to be executed.

M CYCLES: 3

Condition Bits Affected:

Z Set if condition met, reset otherwise.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

42 of 179

cINB

Operation: if condition cc = 0
 Z <- 0
 PC <- PC + 4

if condition cc = 1
 P0 <<- (nnnn)
 Z <- 1
 PSC <- PSC + 1
 PC <- PC + 4

Format:

nnnn cc cINB

The cc operand is any of the condition codes as defined for the FLAG instruction. nnnn
is the address of the load value.

nnnn cc cINB

#E4

1

1

1

0

0

1

0

0

#0<cc>

0

0

0

0

<

c

c

>

LSB nnnn

<

n

n

>

MSB nnnn

<

n

n

>

Description:

If the condition cc is met then the value of the input port at the I/O address indicated by
the operand nnnn is pushed into the least significant byte of the P0 register. The most
significant byte of P0 is filled with zeroes. Execution continues at the instruction following

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

43 of 179

the operand nnnn in memory. If the condition is not met then the address of the
instruction following the operand nnnn in memory (PC + 4) is loaded into the PC register
and points to the next program instruction to be executed.

M CYCLES: 3

Condition Bits Affected:

Z Set if condition met, reset otherwise.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

44 of 179

cpIN

Operation: if condition cc = 0
 Z <- 0
 PSC <- PSC - 1
 PC <- PC + 2

if condition cc = 1
 P0 <- (P0)
 Z <- 1
 PC <- PC + 2

Format:

cc cpIN

The cc operand is any of the condition codes as defined for the FLAG instruction

cc cpIN

#EA

1

1

1

0

1

0

1

0

#0<cc>

0

0

0

0

<

C

c

>

Description:

If the condition cc is met then the value of the input port at the I/O address indicated by
the contents of the top register of the parameter stack (P0) is loaded into the P0 register.
If the condition is not met, then the top entry of the parameter stack is popped and
discarded.

M CYCLES: 3 if condition cc is met; 2 otherwise.

Condition Bits Affected:

Z Set if condition met, reset otherwise.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

45 of 179

cpINB

Operation: if condition cc = 0
 Z <- 0
 PSC <- PSC - 1
 PC <- PC + 2

if condition cc = 1
 P0 <- (P0)
 Z <- 1
 PC <- PC + 2

Format:

cc cpINB

The cc operand is any of the condition codes as defined for the FLAG instruction

cc cpINB

#EC

1

1

1

0

1

1

0

0

#0<cc>

0

0

0

0

<

c

c

>

Description:

If the condition cc is met then the value of the input port at the I/O address indicated by
the contents of the top register of the parameter stack (P0) is loaded into the least
significant byte of the P0 register. The most significant byte of P0 is filled with zeroes. If
the condition is not met, then the top entry of the parameter stack is popped and
discarded.

M CYCLES: 3 if condition cc is met; 2 otherwise.

Condition Bits Affected:

Z Set if condition met, reset otherwise.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

46 of 179

cJMP

Operation: if condition cc = 0
 PC <- PC + 4

if condition cc = 1
 PC <- nnnn

Format:

nnnn cc cJMP

The cc operand is any of the condition codes as defined for the FLAG instruction. nnnn
is the destination address.

nnnn cc cJMP

#81

1

0

0

0

0

0

0

1

#0<cc>

0

0

0

0

<

c

c

>

LSB nnnn

<

n

n

>

MSB nnnn

<

n

n

>

Description:

If the condition cc is met then the destination address nnnn is loaded into the Program
Counter Register (PC) and points to the address of the next program instruction to be
executed. If the condition is not met then the address of the instruction following the
destination address in memory (PC + 4) is loaded into the PC register and points to the
next program instruction to be executed.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

47 of 179

The assembler provides the following definitions to aid the computation of jump
addresses:

cc cJMPbegin Stores opcode and leaves address of the place to insert the jump

address on top of the IPS-X parameter stack.

cJMPelse Calculates and inserts the required jump address into the address
 previously deposited by cJMPbegin on the top of the IPS-X

parameter stack. The address is popped and discarded. Then an
AL cJMP is assembled into the code, and the address of the place
to insert the jump address is pushed onto the top of the IPS-X
parameter stack.

cJMPend Calculates and inserts the required jump address into the address

previously deposited by cJMPbegin or cJMPelse. The address is
popped and discarded.

M CYCLES: 3

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

48 of 179

cpJMP

Operation: if condition cc = 0
 PSC <- PSC - 1
 PC <- PC + 2

if condition cc = 1
 PC <- P0
 PSC <- PSC - 1

Format:

cc cpJMP

The cc operand is any of the condition codes as defined for the FLAG instruction.

cc cpJMP

#89

1

0

0

0

1

0

0

1

#0<cc>

0

0

0

0

<

c

c

>

Description:

If the condition cc is met then the top of the parameter stack is popped into the Program
Counter Register (PC) and points to the address of the next program instruction to be
executed. If the condition is not met then the top entry of the parameter stack is popped
and the address of the next instruction in memory (PC + 2) is loaded into the PC register
and points to the next program instruction to be executed.

M CYCLES: 2

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

49 of 179

sJMP

Operation: PC <- abc

Format:

abc sJMP

#0<a>

0

0

0

0

<

a

>

<c>

<

b

>

<

c

>

Description:

Unconditional jump to a 12-bit address specified by abc. The operand abc is loaded into
the Program Counter Register (PC) and points to the address of the next program
instruction to be executed.

The assembler provides the following definitions to aid the computation of jump
addresses:

sJMPbegin Stores opcode and leaves address of the place to insert the jump

address on top of the IPS-X parameter stack.

sJMPcomplete Calculates and inserts the required jump address into the address

previously deposited by sJMPbegin. The address is popped and
discarded.

M CYCLES: 2

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

50 of 179

JPPC

Operation: PPC <<- (PPC)
 PC <- PC + 2

Format:

JPPC

#FC

1

1

1

1

1

1

0

0

#00

0

0

0

0

0

0

0

0

Description:

The contents of the word in memory at the address indicated by the contents of the
Pseudo Program Counter Register (PPC) are loaded into the PPC register. Program
execution continues at the next instruction in memory (PC + 2).

M CYCLES: 3

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

51 of 179

cJSR

Operation: if condition CC = 0
 PC <- PC + 4

if condition cc = 1
 R0 <- PC + 4
 RSC <- RSC + 1
 PC <- nnnn

Format:

nnnn cc cJSR

The cc operand is any of the condition codes as defined for the FLAG instruction. nnnn
is the address of a subroutine.

nnnn cc cJSR

#80

1

0

0

0

0

0

0

0

#0<cc>

0

0

0

0

<

c

c

>

LSB nnnn

<

n

n

>

MSB nnnn

<

n

n

>

Description:

If the condition cc is met then the address of the instruction following the subroutine
address in memory (PC + 4) is pushed onto the top of the return stack. The subroutine
address nnnn is loaded into the Program Counter Register (PC) and points to the
address of the next program instruction to be executed. If the condition is not met then
the address of the instruction following the subroutine address in memory (PC + 4) is
loaded into the PC register and points to the next program instruction to be executed.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

52 of 179

The assembler provides the following definitions to aid the computation of jump
addresses:

cc cJSRbegin Stores opcode and leaves address of the place to insert the jump

address on top of the IPS-X parameter stack.

cJSRcomplete Calculates and inserts the required jump address into the address

previously deposited by cJSRbegin. The address is popped and
discarded.

M CYCLES: 3

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

53 of 179

cpJSR

Operation: if condition cc = 0
 PSC <- PSC - 1
 PC <- PC + 2

if condition cc = 1
 R0 <<- PC + 2
 RSC <- RSC + 1
 PC <- P0
 PSC <- PSC - 1

Format:

cc cpJSR

The cc operand is any of the condition codes as defined for the FLAG instruction.

cc cpJSR

#88

1

0

0

0

1

0

0

0

#0<cc>

0

0

0

0

<

c

c

>

Description:

If the condition cc is met then the address of the next instruction in memory (PC + 2) is
pushed onto the return stack. Top of the parameter stack is popped into the Program
Counter Register (PC) and points to the address of the next program instruction to be
executed. If the condition is not met then the top of the parameter stack is popped and
the address of the next instruction in memory (PC + 2) is loaded into the PC register and
points to the next program instruction to be executed.

M CYCLES: 3

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

54 of 179

sJSR

Operation: R0 <<- PC + 2
 RSC <- RSC + 1
 PC <- abc

Format:

abc sJSR

#1<a>

0

0

0

1

<

a

>

<c>

<

b

>

<

c

>

Description:

Unconditional jump to a subroutine whose 12-bit address is specified by abc. The
address of the next instruction in memory (PC + 2) is pushed onto the return stack, then
the operand abc is loaded into the Program Counter Register (PC) and points to the
address of the next program instruction to be executed.

The assembler provides the following definitions to aid the computation of jump
addresses:

sJSRbegin Stores opcode and leaves address of the place to insert the jump

address on top of the IPS-X parameter stack.

sJSRcomplete Calculates and inserts the required jump address into the address

previously deposited by sJSRbegin. The address is popped and
discarded.

M CYCLES: 3

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

55 of 179

cLOAD

Operation: if condition cc = 0
 Z <- 0
 PC <- PC + 4

if condition cc = 1
 P0 <<- (nnnn)
 Z <- 1
 PSC <- PSC + 1
 PC <- PC + 4

Format:

nnnn cc cLOAD

The cc operand is any of the condition codes as defined for the FLAG instruction. nnnn
is the address of the load value.

nnnn cc cLOAD

#82

1

0

0

0

0

0

1

0

#0<cc>

0

0

0

0

<

c

c

>

LSB nnnn

<

n

n

>

MSB nnnn

<

n

n

>

Description:

If the condition cc is met then the word located at memory address indicated by the
operand nnnn is pushed onto the top of the parameter stack. Execution continues at the
instruction following the operand nnnn in memory. If the condition is not met then the

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

56 of 179

address of the instruction following the operand nnnn in memory (PC + 4) is loaded into
the PC register and points to the next program instruction to be executed.

M CYCLES: 3

Condition Bits Affected:

Z Set if condition met, reset otherwise.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

57 of 179

cLOADB

Operation: if condition cc = 0
 Z <- 0
 PC <- PC + 4

if condition cc = 1
 P0 <<- (nnnn)
 Z <- 1
 PSC <- PSC + 1
 PC <- PC + 4

Format:

nnnn cc cLOADB

The cc operand is any of the condition codes as defined for the FLAG instruction. nnnn
is the address of the load value.

nnnn cc cLOADB

#84

1

0

0

0

0

1

0

0

#0<cc>

0

0

0

0

<

c

c

>

LSB nnnn

<

n

n

>

MSB nnnn

<

n

n

>

Description:

If the condition cc is met then the byte located at memory address indicated by the
operand nnnn is pushed onto the top of the parameter stack. The byte is placed into the
least significant byte of the P0 register; the upper byte being filled with zeroes.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

58 of 179

Execution continues at the instruction following the operand nnnn in memory. If the
condition is not met then the address of the instruction following the operand nnnn in
memory (PC + 4) is loaded into the PC register and points to the next program
instruction to be executed.

M CYCLES: 3

Condition Bits Affected:

Z Set if condition met, reset otherwise.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

59 of 179

cNLOAD

Operation: if condition cc = 0
 Z <- 0
 PC <- PC + 4

if condition cc = 1
 P0 <<- nnnn
 Z <- 1
 PSC <- PSC + 1
 PC <- PC + 4

Format:

nnnn cc cNLOAD

The cc operand is any of the condition codes as defined for the FLAG instruction. nnnn
is the address of the load value.

nnnn cc cNLOAD

#60

0

1

1

0

0

0

0

0

#0<cc>

0

0

0

0

<

c

c

>

LSB nnnn

<

n

n

>

MSB nnnn

<

n

n

>

Description:

If the condition cc is met then the word operand nnnn is pushed onto the top of the
parameter stack. Execution continues at the instruction following the operand nnnn in
memory. If the condition is not met then the address of the instruction following the

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

60 of 179

operand nnnn in memory (PC + 4) is loaded into the PC register and points to the next
program instruction to be executed.

M CYCLES: 3 if condition cc is met; 2 otherwise.

Condition Bits Affected:

Z Set if condition met, reset otherwise.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

61 of 179

cpLOAD

Operation: if condition cc = 0
 Z <- 0
 PSC = PSC - 1
 PC <- PC + 2

if condition cc = 1
 P0 <- (P0)
 Z <- 1

PC <- PC + 2

Format:

cc cpLOAD

The cc operand is any of the condition codes as defined for the FLAG instruction.

cc cpLOAD

#8A

1

0

0

0

1

0

1

0

#0<cc>

0

0

0

0

<

c

c

>

Description:

The top entry of the parameter stack is popped. If the condition cc is met then the value
in memory at the address pointed to by the address in the previous top of the parameter
stack is pushed onto the top of the parameter stack (P0).

M CYCLES: 3 if condition cc is met; 2 otherwise.

Condition Bits Affected:

Z Set if condition met, reset otherwise.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

62 of 179

cpLOADB

Operation: if condition cc = 0
 Z <- 0
 PSC = PSC - 1
 PC <- PC + 2

if condition cc = 1
 P0 <- LSB (P0)
 Z <- 1
 PC <- PC + 2

Format:

cc cpLOADB

The cc operand is any of the condition codes as defined for the FLAG instruction.

cc cpLOADB

#8C

1

0

0

0

1

1

0

0

#0<cc>

0

0

0

0

<

c

c

>

Description:

The top entry of the parameter stack is popped. If the condition cc is met then the value
of the byte in memory at the address pointed to by the address in the previous top of the
parameter stack is pushed onto the top of the parameter stack (P0). The byte is placed
in the least significant byte of the P0 register. The most significant byte of the P0 register
is filled with zeroes.

M CYCLES: 3 if condition cc is met; 2 otherwise.

Condition Bits Affected:

Z Set if condition met, reset otherwise.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

63 of 179

sLOAD

Operation: P0 <- (abc)
 PC <- PC + 2

Format:

abc sLOAD

#2<a>

0

0

1

0

<

a

>

<c>

<

b

>

<

c

>

Description:

The contents of the word in memory at the address specified by the 12 bit operand is
loaded into the top of the parameter stack (P0).

M CYCLES: 3

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

64 of 179

sNLOAD

Operation: P0 <<- sN
 PSC <- PSC + 1
 PC <- PC + 2

Format:

sN sNLOAD

#71

0

1

1

1

0

0

0

1

sN

<

s

N

>

Description:

This instruction is an unconditional push of the signed operand sN onto the top of the
parameter stack. The operand sN is placed in the least significant byte of the top register
of the parameter stack (P0), the most significant byte of the P0 register is filled with the
most significant bit of the operand.

M CYCLES: 2

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

65 of 179

uNLOAD

Operation: P0 <<- uN
 PSC <- PSC + 1
 PC <- PC + 2

Format:

uN uNLOAD

#70

0

1

1

1

0

0

0

0

uN

<

u

N

>

Description:

This instruction is an unconditional push of the unsigned operand uN onto the top of the
parameter stack. The operand uN is placed in the least significant byte of the top register
of the parameter stack (P0), the most significant byte of the P0 register is filled with
zeroes.

M CYCLES: 2

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

66 of 179

LSL

Operation: P0 <- P0, C<b15, b15<b14, b14<-b13 .. b0<0

 PC <- PC + 2

Format:

LSL

#C2

1

1

0

0

0

0

1

0

#00

0

0

0

0

0

0

0

0

Description:

An logic shift left is performed on the contents of the top register of the parameter stack
(P0). Bit 0 (b0) is reset, the previous content of bit 0 (b0) is copied into bit 1 (b1); this
pattern is continued throughout the word. The content of bit 15 (b15) is copied into the
Carry Flag ("C" in the FLAGS register). Bit 0 is the least significant bit.

M CYCLES: 2

Condition Bits Affected:

C: Data from Bit 15 of previous contents of P0

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

O: Reset.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

67 of 179

LSR

Operation: P0 <- P0, C<b0, b0<b1, b1<-b2 .. b15<0
 PC <- PC + 2

Format:

LSR

#C2

1

1

0

0

0

0

1

0

#10

0

0

0

1

0

0

0

0

Description:

An logical shift right is performed on the contents of the top register of the parameter
stack (P0). Bit 15 (b15) is reset, the previous content of bit 15 (b15) is copied into bit 14
(b14); this pattern is continued throughout the word. The content of bit 0 (b0) is copied
into the Carry Flag ("C" in the FLAGS register). Bit 0 is the least significant bit.

M CYCLES: 2

Condition Bits Affected:

C: Data from Bit 0 of previous contents of P0

S: Reset

Z: Set if result is zero; reset otherwise

O: Reset.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

68 of 179

MASK

Operation: if operand is uN

P0 <- bit specified by low-order four bits of the operand uN is
set, all other bits are cleared.

 PC <- PC + 2

if operand is P0
P0 <- bit specified by low-order four bits of P0 is set, all

other bits are cleared.
PC <- PC + 2

Format:

[uN] y MASK

The y operand is either of uN or P0. These various possible opcode-operand
combinations are assembled as follows in the object code:

uN uN MASK

#AC

1

1

0

0

1

1

0

0

8-bit unsigned value, only the low-order four bits are used.

<

u

N

>

P0 MASK

#C0

1

1

0

0

0

0

0

0

#C0

1

1

0

0

0

0

0

0

Description:

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

69 of 179

The top entry of the parameter stack (P0) is popped. A mask is pushed onto the top of
the parameter stack. The mask has all bits cleared except for the bit specified by the low
order four bits of the s operand, which is set.

M CYCLES: 2

Condition Bits Affected:

C: Reset

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

O: Reset

Example:

If the the P0 register contains #0002 after the execution of

 P0 BIT

the P0 register will contain #0004 (B0000000000000100).

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

70 of 179

NEG

Operation: P0 <- 0 – P0
 PC <- PC + 2

Format:

NEG

#C0

1

1

0

0

0

0

0

0

#F0

1

1

1

1

0

0

0

0

Description:

The contents of the top of the parameter stack (P0) are negated (two’s complement).
This is the same as subtracting the contents of the P0 register from zero. Note that
#8000 is left unchanged.

M CYCLES: 2

Condition Bits Affected:

C: Set if P0 was not #0000 before operation; reset otherwise

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

O: Reset

Example:

If the top of the Parameter Stack contains:

#0001

after the execution of

NEG

The top of the parameter stack will contain:

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

71 of 179

#FFFF

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

72 of 179

NOP

Operation: PC <- PC + 2

Format:

NOP

#C0

1

1

0

0

0

0

0

0

#90

1

0

0

1

0

0

0

0

Description:

The processor performs no operation during this machine cycle.

M CYCLES: 2

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

73 of 179

OR

Operation: if operand is uN or sN

P0 <- P0 OR s
 PC <- PC + 2

if operand is P1
 P0 <- P0 OR P1
 PSC <- PSC - 1

PC <- PC + 2

Format:

[uN|sN] s OR

The s operand is any of uN, sN or P1. These various possible opcode-operand
combinations are assembled as follows in the object code:

uN uN OR

#A7

1

0

1

0

0

1

1

1

8-bit unsigned value, this is extended by the processor prior to the operation by filling
bits 8 – 15 with zeroes.

<

u

N

>

sN sN OR

#B7

1

0

1

1

0

1

1

1

8-bit signed value, this is extended by the processor prior to the operation by filling bits 8
– 15 with the most significant bit of the operand.

<

s

N

>

P1 OR

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

74 of 179

#C0

1

1

0

0

0

0

0

0

#70

0

1

1

1

0

0

0

0

Description:

A logical OR operation is performed, bit by bit, between the byte or word specified by the
s operand and the contents of the top register of the parameter stack (P0); the result
replaces the contents of the P0 register. In the case of the P1 variant, the top two entries
on the parameter stack are popped and the result pushed onto the top of the parameter
stack.

M CYCLES: 2

Condition Bits Affected:

C: Reset

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

0: Reset

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

75 of 179

cOUT

Operation: if condition cc = 0
 Z <- 0
 PC <- PC + 4

if condition cc = 1
 (nnnn) <- P0
 Z <- 1
 PSC <- PSC - 1
 PC <- PC + 4

Format:

nnnn cc cOUT

The cc operand is any of the condition codes as defined for the FLAG instruction. nnnn
is the destination address.

nnnn cc cOUT

#E3

1

1

1

0

0

0

1

1

#0<cc>

0

0

0

0

<

c

c

>

LSB nnnn

<

n

n

>

MSB nnnn

<

n

n

>

Description:

If the condition cc is met then the value in the top register of the parameter stack (P0) is
popped and written to the I/O port at the address pointed to by the destination address
nnnn. Execution continues at the instruction following the operand nnnn in memory.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

76 of 179

If the condition is not met then the address of the instruction following the operand nnnn
in memory (PC + 4) is loaded into the PC register and points to the next program
instruction to be executed. The contents of the parameter stack remain unchanged.

M CYCLES: 3

Condition Bits Affected:

Z Set if condition met, reset otherwise.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

77 of 179

cOUTB

Operation: if condition cc = 0
 Z <- 0
 PC <- PC + 4

if condition cc = 1
 (nnnn) <- LSB P0
 Z <- 1
 PSC <- PSC - 1
 PC <- PC + 4

Format:

nnnn cc cOUTB

The cc operand is any of the condition codes as defined for the FLAG instruction. nnnn
is the destination address.

nnnn cc cOUTB

#E5

1

1

1

0

0

1

0

1

#0<cc>

0

0

0

0

<

c

c

>

LSB nnnn

<

n

n

>

MSB nnnn

<

n

n

>

Description:

If the condition cc is met then the value in the top register of the parameter stack (P0) is
popped and written to the I/O port at the address pointed to by the destination address
nnnn. Execution continues at the instruction following the operand nnnn in memory.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

78 of 179

If the condition is not met then the address of the instruction following the operand nnnn
in memory (PC + 4) is loaded into the PC register and points to the next program
instruction to be executed. The contents of the parameter stack remain unchanged.

M CYCLES: 3

Condition Bits Affected:

Z Set if condition met, reset otherwise.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

79 of 179

cpOUT

Operation: if condition cc = 0
 PSC <- PSC - 2

PC <- PC + 2

if condition cc = 1
 (P0) <- P1
 PSC <- PSC - 2
 PC <- PC + 2

Format:

cc cpOUT

The cc operand is any of the condition codes as defined for the FLAG instruction.

cc cpOUT

#EB

1

1

1

0

1

0

1

1

#0<cc>

0

0

0

0

<

c

c

>

Description:

If the condition cc is met then the value in the second register of the parameter stack
(P1) is written to the output port at the I/O address indicated by the contents of the top
register of the parameter stack (P0). If the condition is not met then the address of the
next instruction in memory (PC + 2) is loaded into the PC register and points to the next
program instruction to be executed. In both cases the top two entries on the parameter
stack are popped and discarded.

M CYCLES: 3

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

80 of 179

cpOUTB

Operation: if condition cc = 0
 PSC <- PSC - 2

PC <- PC + 2

if condition cc = 1
 (P0) <- LSB P1
 PSC <- PSC - 2
 PC <- PC + 2

Format:

cc cpOUTB

The cc operand is any of the condition codes as defined for the FLAG instruction.

cc cpOUTB

#ED

1

1

1

0

0

1

1

1

#0<cc>

0

0

0

0

<

c

c

>

Description:

If the condition cc is met then the value in the second register of the parameter stack
(P1) is written to the output port at the I/O address indicated by the contents of the top
register of the parameter stack (P0). If the condition is not met then the address of the
next instruction in memory (PC + 2) is loaded into the PC register and points to the next
program instruction to be executed. In both cases the top two entries on the parameter
stack are popped and discarded.

M CYCLES: 3

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

81 of 179

POPPS

Operation: qq <- P0

PSC <- PSC – 1
PC <- PC + 2

Format:

qq POPPS

The qq operand is any of PC, PPC, HP, FLAGS, PSP, PSC, RSP, RSC, EA or RR.
These various possible opcode-operand combinations are assembled as follows in the
object code:

qq POPPS

#D1

1

1

0

1

0

0

0

1

#<qq>0

<

q

q

>

0

0

0

0

Register <qq>

PC 0000 #00
PPC 0001 #01
HP 0010 #02
FLAGS 0011 #03
PSP 0100 #04
PSC 0101 #05
RSP 0110 #06
RSC 0111 #07
EA 1000 #08
RR 1001 #09

Description:

The contents of the top register of the parameter stack (P0) are popped into the register
specified by the operand qq.

M CYCLES: 3 if PC; otherwise 2.

Condition Bits Affected:

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

82 of 179

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

83 of 179

POPRS

Operation: qq <- R0

RSC <- RSC – 1
PC <- PC + 2

Format:

qq POPRS

The qq operand is any of PC, PPC, HP, FLAGS, PSP, PSC, RSP, RSC, EA or RR.
These various possible opcode-operand combinations are assembled as follows in the
object code:

qq POPRS

#D3

1

1

1

0

0

0

1

1

#<qq>0

<

q

q

>

0

0

0

0

Register <qq>

PC 0000 #00
PPC 0001 #01
HP 0010 #02
FLAGS 0011 #03
PSP 0100 #04
PSC 0101 #05
RSP 0110 #06
RSC 0111 #07
EA 1000 #08
RR 1001 #09

Description:

The contents of the top register of the return stack (R0) are popped into the register
specified by the operand qq.

M CYCLES: 3 if PC; otherwise 2.

Condition Bits Affected:

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

84 of 179

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

85 of 179

PREPARE

Operation: if condition cc = 1

HP <- (PPC)
 PPC <- PPC + 2

Z <- 1
PC <- PC + 2

 if condition cc = 0
 Z <- 0
 PC <- PC + 2

Format:

cc PREPARE

The cc operand is any of the condition codes as defined for the FLAG instruction.

cc PREPARE

#F2

1

1

1

1

0

0

1

0

#0<cc>

0

0

0

0

<

c

c

>

Description:

If the condition cc is met then PREPARE loads the Header Pointer Register (HP) with
the contents of the word in memory at the address indicated by the Pseudo Program
Counter Register (PPC). The Zero Flag ("Z" in the FLAGS register) is set. The PPC
register is incremented by 2. If the condition cc is not met then the Zero Flag is cleared.
In both cases program execution continues at the next instruction in memory (PC + 2).

M CYCLES: 4 cycles if cc, 2 cycles if not cc

Condition Bits Affected:

Z <- 1, if condition cc is met; 0 otherwise.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

86 of 179

PTOR

Operation: R0 <<- P0
 RSC <- RSC + 1
 PSC <- PSC – 1
 PC <- PC + 2

Format:

PTOR

#C1

1

1

0

0

0

0

0

1

#60

0

1

1

0

0

0

0

0

Description:

The top entry of the parameter stack is popped and pushed onto the top of the return
stack.

M CYCLES: 2

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

87 of 179

PUSHPS

Operation: P0 <<- qq

PSC <- PSC + 1
PC <- PC + 2

Format:

qq PUSHPS

The qq operand is any of PC, PPC, HP, FLAGS, PSP, PSC, RSP, RSC, EA or RR.
These various possible opcode-operand combinations are assembled as follows in the
object code:

qq PUSHPS

#D0

1

1

0

1

0

0

0

0

#<qq>0

<

q

q

>

0

0

0

0

Register qq

PC 0000 #00
PPC 0001 #01
HP 0010 #02
FLAGS 0011 #03
PSP 0100 #04
PSC 0101 #05
RSP 0110 #06
RSC 0111 #07
EA 1000 #08
RR 1001 #09

Description:

The contents of the register specified by the operand qq are pushed onto the top of the
parameter stack.

M CYCLES: 2

Condition Bits Affected:

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

88 of 179

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

89 of 179

PUSHRS

Operation: R0 <<- qq

RSC <- RSC + 1
PC <- PC + 2

Format:

qq PUSHRS

The qq operand is any of PC, PPC, HP, FLAGS, PSP, PSC, RSP, RSC, EA or RR.
These various possible opcode-operand combinations are assembled as follows in the
object code:

qq PUSHRS

#D2

1

1

0

1

0

0

1

0

#<qq>0

<

q

q

>

0

0

0

0

Register qq

PC 0000 #00
PPC 0001 #01
HP 0010 #02
FLAGS 0011 #03
PSP 0100 #04
PSC 0101 #05
RSP 0110 #06
RSC 0111 #07
EA 1000 #08
RR 1001 #09

Description:

The contents of the register specified by the operand qq are pushed onto the top of the
parameter stack.

M CYCLES: 2

Condition Bits Affected:

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

90 of 179

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

91 of 179

RCMP

Operation: if operand is uN or sN

s – P0
 PC <- PC + 2

if operand is P1
 P0 – P1

PC <- PC + 2

Format:

[uN|sN] s RCMP

The s operand is any of uN , sN or P1. These various possible opcode-operand
combinations are assembled as follows in the object code:

uN uN RCMP

#AA

1

0

1

0

1

0

1

0

8-bit unsigned value, this is extended by the processor prior to the operation by filling
bits 8 – 15 with zeroes.

<

u

N

>

sN sN RCMP

#BA

1

0

1

1

1

0

1

0

8-bit signed value, this is extended by the processor prior to the operation by filling
bits 8 – 15 with the most significant bit of the operand.

<

s

N

>

P1 RCMP

#C0

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

92 of 179

1

1

0

0

0

0

1

0

#B0

1

0

1

1

0

0

0

0

Description:

In the case of the sN or uN variants The contents of the top register of the parameter
stack (P0) are compared to (subtracted from) the operand s, and the condition flags are
set. In the case of the P1 variant the contents of the second register of the parameter
stack (P1) is compared to (subtracted from) the top register of the parameter stack (P0)
and the condition flags are set. The contents of the parameter stack remain unchanged.

M CYCLES: 2

Condition Bits Affected:

C: Set if there was a borrow; reset otherwise

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

0: Set if signed overflow; reset otherwise

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

93 of 179

REFRESH

Operation: If cc = 1

(RR) <- (RR)
 RR <- RR + 2

PC <- PC + 2
 If cc = 0
 PC <- PC + 2

Format:

cc REFRESH

The cc operand is any of the condition codes as defined for the FLAG instruction.

cc REFRESH

#F6

1

1

1

1

0

1

1

0

#0<cc>

0

0

0

0

<

c

c

>

Description:

This instruction is used to implement the EDAC memory wash. If the condition cc is met
then a 16 bit word is read from memory at the address indicated by the contents of the
Refresh Register (RR). The word is written back to memory at the same address. The
RR register is then incremented by 2. If the read (or indeed any read) resulted in a bit
correction by the EDAC logic, then the EDAC Error Counter (EC) in the FLAGS register
will be incremented, the address of the error will be latched into the EDAC Error Address
Register (EA) and the EDAC Error Flag ("EE" in the FLAGS register) will be set.

M CYCLES: 4 if cc = 1, 2 if cc = 0

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

94 of 179

ROL

Operation: P0 <- P0, C<-b15, b15<-b14, b14<-b13 .. b0<-C
 PC <- PC + 2

Format:

ROL

#C2

1

1

0

0

0

0

1

0

#20

0

0

1

0

0

0

0

0

Description:

The contents of the top register of the parameter stack (P0) are rotated left. The content
of bit 0 (b0) is copied into bit 1 (b1); this pattern is continued throughout the word. The
content of bit 15 (b15) is copied into the Carry Flag ("C" in the FLAGS register) and the
previous content of the Carry Flag is copied into bit 0 (b0). Bit 0 (b0) is the least
significant bit.

M CYCLES: 2

Condition Bits Affected:

C: Data from Bit 15 of previous contents of P0

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

O: Reset.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

95 of 179

ROR

Operation: P0 <- P0, C<-b0, b0<-b1, b1<-b2 .. b15<-C
 PC <- PC + 2

Format:

ROR

#C2

1

1

0

0

0

0

1

0

#30

0

0

1

1

0

0

0

0

Description:

The contents of the top register of the parameter stack (P0) are rotated right. The
content of bit 15 (b15) is copied into bit 14 (b14); this pattern is continued throughout the
word. The content of bit 0 (b0) is copied into the Carry Flag ("C" in the FLAGS register)
and the previous content of the Carry Flag is copied into bit 15 (b15). Bit 0 (b0) is the
least significant bit.

M CYCLES: 2

Condition Bits Affected:

C: Data from Bit 0 of previous contents of P0

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

O: Reset.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

96 of 179

RSBC

Operation: if operand is uN or sN

P0 <- s – P0 – C
 PC <- PC + 2

if operand is P1
 P0 <- P0 – P1 – C
 PSC <- PSC - 1

PC <- PC + 2

Format:

[uN|sN] s RSBC

The s operand is any of uN, sN or P1. These various possible opcode-operand
combinations are assembled as follows in the object code:

uN uN RSBC

#A5

1

0

1

0

0

1

0

1

8-bit unsigned value, this is extended by the processor prior to the operation by filling
bits 8 – 15 with zeroes.

<

u

N

>

sN sN RSBC

#B5

1

0

1

1

0

1

0

1

8-bit signed value, this is extended by the processor prior to the operation by filling bits 8
– 15 with the most significant bit of the operand.

.
<

s

N

>

P1 RSBC

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

97 of 179

#C0

1

1

0

0

0

0

0

0

#30

0

0

1

1

0

0

0

0

Description:

In the case of the uN and sN variants the contents of the top register of the parameter
stack (P0), along with the Carry Flag (“C” in the Flags register) are subtracted from byte
or word specified by the s operand; the result replaces the contents of the P0 register. In
the case of the P1 variant, the top two entries on the parameter stack are popped, the
previous contents of the P1 register, along with the Carry Flag, are subtracted from the
previous contents of the P0 register and the result pushed onto the top of the parameter
stack.

M CYCLES: 2

Condition Bits Affected:

C: Set if there is a borrow; reset otherwise

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

0: Set if signed overflow; reset otherwise

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

98 of 179

RSUB

Operation: if operand is uN or sN

P0 <- s – P0
 PC <- PC + 2

if operand is P1
 P0 <- P0 – P1
 PSC <- PSC - 1

PC <- PC + 2

Format:

[uN|sN] s RSUB

The s operand is any of uN, sN or P1. These various possible opcode-operand
combinations are assembled as follows in the object code:

uN uN RSUB

#A4

1

0

1

0

0

1

0

0

8-bit unsigned value, this is extended by the processor prior to the operation by filling
bits 8 – 15 with zeroes.

<

u

N

>

sN sN RSUB

#B4

1

0

1

1

0

1

0

0

8-bit signed value, this is extended by the processor prior to the operation by filling bits 8
– 15 with the most significant bit of the operand.

<

s

N

>

P1 RSUB

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

99 of 179

#C0

1

1

0

0

0

0

0

0

#20

0

0

1

0

0

0

0

0

Description:

In the case of the uN or sN variants the contents of the top register of the parameter
stack (P0) is subtracted from the byte or word specified by the s operand; the result
replaces the contents of the P0 register. In the case of the P1 variant, the top two entries
on the parameter stack are popped, the previous contents of the P1 register are
subtracted from the previous contents of the P0 register and the result pushed onto the
top of the parameter stack.

M CYCLES: 2

Condition Bits Affected:

C: Set if there was a borrow; reset otherwise

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

0: Set if signed overflow; reset otherwise

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

100 of 179

RTD

Operation: P0 <- P2 <- P1 <- P0
 PC <- PC + 2

Format:

RTD

#C1

1

1

0

0

0

0

0

1

#50

0

1

0

1

0

0

0

0

Description:

This instruction rotates down the contents of the top three registers of the parameter
stack; the old third lowest entry becomes the topmost.

M CYCLES: 2

Condition Bits Affected:

None

Example:

 P2 P1 P0
Before operation: 12 8 5
After operation: 8 5 12

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

101 of 179

RTOP

Operation: P0 <- R0
 PSC <- PSC + 1
 RSC <- RSC - 1
 PC <- PC + 2

Format:

RTOP

#C1

1

1

0

0

0

0

0

1

#70

0

1

1

1

0

0

0

0

Description:

The top entry of the return stack is popped and pushed onto the top of the parameter
stack.

M CYCLES: 2

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

102 of 179

cRTS

Operation: if condition cc = 0
 PC <- PC + 2

if condition cc = 1
 PC <- R0
 RSC <- RSC - 1

Format:

cc cRTS

The cc operand is any of the condition codes as defined for the FLAG instruction.

cc cRTS

#8E

1

0

0

0

1

1

1

0

#0<cc>

0

0

0

0

<

c

c

>

Description:

If the condition cc is met then the contents of the top register of the return stack (R0) is
popped into the Program Counter register (PC) and points to the address of the next
program instruction to be executed. If the condition is not met then the address of the
next instruction in memory (PC + 2) is loaded into the PC register and points to the next
program instruction to be executed.

M CYCLES: 2

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

103 of 179

RTU

Operation: P2 <- P0 <- P1 <- P2
 PC <- PC + 2

Format:

RTU

#C1

1

1

0

0

0

0

0

1

#40

0

1

0

0

0

0

0

0

Description:

This instruction rotates up the contents of the top three registers of the parameter stack;
the old topmost entry becomes the third lowest.

M CYCLES: 2

Condition Bits Affected:

None

Example:

 P2 P1 P0
Before operation: 8 5 12
After operation: 12 8 5

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

104 of 179

SBC

Operation: if operand is uN or sN

P0 <- P0 - s – C
PC <- PC + 2

if operand is P0

P0 <- P1 – P0 – C
PSC <- PSC - 1
PC <- PC + 2

Format:

[uN|sN] s SBC

The s operand is any of uN, sN or P0. These various possible opcode-operand
combinations are assembled as follows in the object code:

uN uN SBC

#A3

1

0

1

0

0

0

1

1

8-bit unsigned value, this is extended by the processor prior to the operation by filling
bits 8 – 15 with zeroes.

<

u

N

>

sN sN SBC

#B3

1

0

1

1

0

0

1

1

8-bit signed value, this is extended by the processor prior to the operation by filling bits 8
– 15 with the most significant bit of the operand.

<

s

N

>

P0 SBC

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

105 of 179

#C0

1

1

0

0

0

0

0

0

#50

0

1

0

1

0

0

0

0

Description:

In the case of the uN or sN variants the word specified by the s operand, along with the
Carry Flag (“C” in the Flags register) is subtracted from the contents of the top register of
the parameter stack (P0); the result replaces contents of the P0 register. In the case of
the P0 variant, the top two entries on the parameter stack are popped, the previous
contents of the P0 register and the Carry Flag are subtracted from the P1 register and
the result pushed onto the top of the parameter stack.

M CYCLES: 2

Condition Bits Affected:

C: Set if there was a borrow; reset otherwise

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

0: Set if signed overflow; reset otherwise

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

106 of 179

SET

Operation: FLAGS <<- FLAGS OR m
 PC <- PC + 2

Format:

m SET

#D4

1

1

0

1

0

1

0

0

#<m>0

<

m

>

0

0

0

0

Description:

The bit corresponding to the value of m in the FLAGS register is set according to the
following table:

FLAGS bit m

C 0000 #00
Z 0001 #01
S 0010 #02
O 0011 #03
E 0100 #04
I * 0101 #05
IE 0110 #06
EE * 0111 #07

Setting of bits marked with an asterisk may produce unpredictable results.

M CYCLES: 2

Condition Bits Affected:

The bit indicated by the m operand is set. Setting the E, EE, or I flags is not
recommended.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

107 of 179

SOT

Operation: P0 <<- P1
 PSC <- PSC + 1
 PC <- PC + 2

Format:

SOT

#C1

1

1

0

0

0

0

0

1

#30

0

0

1

1

0

0

0

0

Description:

The contents of the second register of the parameter stack (P1) are pushed onto the top
of the parameter stack; i.e. duplicates the second entry on the top of the stack.

M CYCLES: 2

Condition Bits Affected:

None

Example:

 P2 P1 P0
Before operation: - 5 12
After operation: 5 12 5

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

108 of 179

cSTORE

Operation: if condition cc = 0
 Z <- 0
 PC <- PC + 4

if condition cc = 1
 (nnnn) <- P0
 Z <- 1
 PSC <- PSC - 1
 PC <- PC + 4

Format:

nnnn cc cSTORE

The cc operand is any of the condition codes as defined for the FLAG instruction. nnnn
is the destination address.

nnnn cc cSTORE

#83

1

0

0

0

0

0

1

1

#0<cc>

0

0

0

0

<

c

c

>

LSB nnnn

<

n

n

>

MSB nnnn

<

n

n

>

Description:

If the condition cc is met then the value in the top register of the parameter stack (P0) is
popped and stored in memory at the address pointed to by the destination address
nnnn. Execution continues at the instruction following the operand nnnn in memory.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

109 of 179

If the condition is not met then the address of the instruction following the operand nnnn
in memory (PC + 4) is loaded into the PC register and points to the next program
instruction to be executed. The contents of the parameter stack remain unchanged.

M CYCLES: 3

Condition Bits Affected:

Z Set if condition met, reset otherwise.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

110 of 179

cSTOREB

Operation: if condition cc = 0
 Z <- 0
 PC <- PC + 4

if condition cc = 1
 (nnnn) <- LSB P0
 Z <- 1

PSC <- PSC - 1
 PC <- PC + 4

Format:

nnnn cc cSTOREB

The cc operand is any of the condition codes as defined for the FLAG instruction. nnnn
is the destination address.

nnnn cc cSTOREB

#85

1

0

0

0

0

1

0

1

#0<cc>

0

0

0

0

<

c

c

>

LSB nnnn

<

n

n

>

MSB nnnn

<

n

n

>

Description:

If the condition cc is met then the top entry of the parameter stack (P0) is popped, and
the least significant byte is stored in memory at the address pointed to by the destination

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

111 of 179

address nnnn. Execution continues at the instruction following the operand nnnn in
memory.

If the condition is not met then the address of the instruction following the operand nnnn
in memory (PC + 4) is loaded into the PC register and points to the next program
instruction to be executed. The contents of the parameter stack remain unchanged.

M CYCLES: 3

Condition Bits Affected:

Z Set if condition met, reset otherwise.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

112 of 179

cpSTORE

Operation: if condition cc = 0
 Z <- 0
 PSC <- PSC - 2
 PC <- PC + 2

if condition cc = 1
 (P0) <- P1
 Z <- 1
 PSC = PSC - 2
 PC <- PC + 2

Format:

cc cpSTORE

The cc operand is any of the condition codes as defined for the FLAG instruction.

cc cpSTORE

#8B

1

0

0

0

1

0

1

1

#0<cc>

0

0

0

0

<

c

c

>

Description:

If the condition cc is met then the contents of the second register of the parameter stack
(P1) are stored in memory at the address pointed to by the top register of the parameter
stack (P0). In both cases the top two entries in the parameter stack are popped.

M CYCLES: 3

Condition Bits Affected:

Z Set if condition met, reset otherwise.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

113 of 179

cpSTOREB

Operation: if condition cc = 0
 Z <- 0
 PSC <- PSC - 2
 PC <- PC + 2

if condition cc = 1
 (P0) <- LSB P1
 Z <- 1
 PSC = PSC - 2
 PC <- PC + 2

Format:

cc cpSTOREB

The cc operand is any of the condition codes as defined for the FLAG instruction.

cc cpSTOREB

#8D

1

0

0

0

1

1

0

1

#0<cc>

0

0

0

0

<

c

c

>

Description:

If the condition cc is met then the contents of the least significant byte of the second
register of the parameter stack (P1) are stored in memory at the address pointed to by
the top register of the parameter stack (P0). In both cases the top two entries of the
parameter stack are popped.

M CYCLES: 3

Condition Bits Affected:

Z Set if condition met, reset otherwise.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

114 of 179

sSTORE

Operation: (abc) <- P0
 PC <- PC + 2

Format:

abc sSTORE

#3<a>

0

0

1

1

<

a

>

<c>

<

b

>

<

c

>

Description:

The contents of the top register of the parameter stack (P0) are stored in the address in
memory location indicated by the operand abc. The contents of the parameter stack
remain unchanged.

M CYCLES: 3

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

115 of 179

SUB

Operation: if operand is uN or sN

P0 <- P0 – s
 PC <- PC + 2

if operand is P0
 P0 <- P1 – P0
 PSC <- PSC - 1

PC <- PC + 2

Format:

[uN|sN] s SUB

The s operand is any of uN, sN or P0. These various possible opcode-operand
combinations are assembled as follows in the object code:

uN uN SUB

#A2

1

0

1

0

0

0

1

0

8-bit unsigned value, this is extended by the processor prior to the operation by filling
bits 8 – 15 with zeroes.

<

u

N

>

sN sN SUB

#B2

1

0

1

1

0

0

1

0

8-bit signed value, this is extended by the processor prior to the operation by filling bits 8
– 15 with the most significant bit of the operand.

<

s

N

>

P0 SUB

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

116 of 179

#C0

1

1

0

0

0

0

0

0

#40

0

1

0

0

0

0

0

0

Description:

In the case of the uN or sN variants the word specified by the s operand is subtracted
from the top of the parameter stack (P0); the result replaces the contents of the P0
register. In the case of the P0 variant, the top two entries on the parameter stack are
popped, the previous contents of the P0 register are subtracted from the previous
contents of the P1 register and the result pushed onto the top of the parameter stack.

M CYCLES: 2

Condition Bits Affected:

C: Set if there was a borrow; reset otherwise

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

0: Set if signed overflow; reset otherwise

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

117 of 179

SWAP

Operation: P0 <-> P1
 PC <- PC + 2

Format:

SWAP

#C1

1

1

0

0

0

0

0

1

#20

0

0

1

0

0

0

0

0

Description:

The contents of the top two registers of the parameter stack (P0 and P1) are exchanged;
i.e. swapped.

M CYCLES: 2

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

118 of 179

TST

Operation: if operand is uN or sN

P0 AND s
 PC <- PC + 2

if operand is P1
 P0 AND P1
 PSC <- PSC - 1

PC <- PC + 2

Format:

[uN|sN] s TST

The s operand is any of uN, sN or P1. These various possible opcode-operand
combinations are assembled as follows in the object code:

uN uN TST

#AE

1

0

1

0

1

1

1

0

8-bit unsigned value, this is extended by the processor prior to the operation by filling
bits 8 – 15 with zeroes.

<

u

N

>

sN sN TST

#BE

1

0

1

1

1

1

1

0

8-bit signed value, this is extended by the processor prior to the operation by filling bits 8
– 15 with the most significant bit of the operand.

<

s

N

>

P1 TST

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

119 of 179

#C0

1

1

0

0

0

0

0

0

#E0

1

1

1

0

0

0

0

0

Description:

A logical AND operation is performed, bit by bit, between the byte or word specified by
the s operand and the contents of the top register of the parameter stack (P0); the
condition flags are set. The contents of the stack remain unchanged.

M CYCLES: 2

Condition Bits Affected:

C: Reset

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

O: Reset.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

120 of 179

XB

Operation: P0 <- P0<LSB>P0<MSB>
 PC <- PC + 2

Format:

XB

#FD

1

1

1

1

1

1

0

1

#00

0

0

0

0

0

0

0

0

Description:

The XB instruction exchanges the order of the two bytes in the top register of the
parameter stack (P0). i.e. the LSB becomes the MSB and vice versa.

M CYCLES: 2

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

121 of 179

XRP

Operation: R0 <-> P0
 PC <- PC + 2

Format:

XRP

#C1

1

1

0

0

0

0

0

1

#90

1

0

0

1

0

0

0

0

Description:

The contents of the top registers of the parameter stack (P0) and the return stack (R0)
are exchanged; i.e. swapped, there is no pushing or popping.

M CYCLES: 2

Condition Bits Affected:

None

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

122 of 179

CHAPTER 4 - Am1601 Assembler / IPS-F1G

The IPS-F1G source code must be compiled with a version of IPS-X
that supports the “align” variable.

(Am1601 Assembler)
(Copyright 2002 AMSAT-DL)
(by Karl Meinzer, James Miller,)
(Lyle Johnson & Paul Willmott)

(This program is free software; you can redistribute it)
(and/or modify it under the terms of the GNU General)
(Public License as published by the Free Software)
(Foundation; either version 2 of the License, or at)
(your option, any later version.)

(This program is distributed in the hope that it will)
(be useful, but WITHOUT ANY WARRANTY; without even the)
(implied warranty of MERCHANTABILITY or FITNESS FOR A)
(PARTICULAR PURPOSE. See the GNU General Public)
(License for more details.)

(You should have received a copy of the GNU General)
(Public License along with this program; if not, write)
(to the Free Software Foundation, Inc., 59 Temple)
(Place, Suite 330, Boston, MA 02111-1307 USA)

(Contact : vp9mu@amsat.org)

(NOTE: stack comments have top on right)

("Assembler" definitions for use by IPS-X cross compiler)

:prior i> 0 compileflag !b ;n
:int <i 1 compileflag !b ;n
:n , hier $OC !b $h incr ;n
:int code entrysetup ja? hier vert !O
 dann ;n
:int rcode entrysetup ja? !O dann ;n

02 align !n (set even address alignment)

(Constants for cc codes)
(----------------------)

#0 kon EQ #1 kon NE #2 kon CS #3 kon CC
#4 kon MI #5 kon PL #6 kon VS #7 kon VC
#8 kon HS #9 kon LO #A kon GE #B kon LT
#C kon GT #D kon LE #E kon AL #F kon NEF
#2 kon HI #3 kon LS

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

123 of 179

(Comparison Unsigned Signed)
(= EQ EQ)
(!= NE NE)
(>= HS GE)
(> HI CS GT)
(<= LS CC LE)
(< LO LT)

(Constants for PUSH & POP)
(------------------------)

#00 kon PC #10 kon PPC #20 kon HP #30 kon FLAGS
#40 kon PSP #50 kon PSC #60 kon RSP #70 kon RSC
#80 kon EA #90 kon RR

(Constants for Arithmetic/Logical Instruction Operands)
(---)

#00A0 kon uN (unsigned operand flag)
#00B0 kon sN (signed operand flag)
#00C0 kon P0 (parameter stack register 0 flag)
#00C0 kon P1 (parameter stack register 1 flag)

(Constants for SET & CLEAR Instructions)
(--------------------------------------)

#00 kon FLGC #10 kon FLGZ #20 kon FLGS #30 kon FLGO
#40 kon FLGE #50 kon FLGI #60 kon FLGIE #70 kon FLGEE

(byte manipulation and storage primitives)
(--)

:n sJCODE (<addr> <opcode>)
 vert (<opcode> <addr>)
 dup (<opcode> <addr> <addr>)
 #100 /n (<opcode> <addr> <MSBAddr>)
 #0F und (restrict range to 0-F)
 rdo (<addr> <MSBaddr> <opcode>)
 oder , (<LSBaddr>)
 #FF und , (-)
;n

:n ccCODE , #0F und , ;n

:n aluCODE (<P1/0> <subc>)
 zwo (<P1/0> <subc> <P1/0>)
 P1 =n ja? (<P1/0> <subc>)
 256 *n (<P1/0> <subc>*256)
 oder (<opcode>)
 $dep (-)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

124 of 179

 nein: (<numb> <uN|sN> <subc>)
 16 /n (<numb> <uN|sN> <subc/16>)
 oder (<numb> <opcode>)
 , (<numb>)
 , (-)
 dann
;n

(instructions)
(------------)

:n sJMP #00 sJCODE ;n
:n sJSR #10 sJCODE ;n
:n sLOAD #20 sJCODE ;n
:n sSTORE #30 sJCODE ;n
:n sBR #40 sJCODE ;n
:n sBSR #50 sJCODE ;n
:n cNLOAD #60 ccCODE $dep ;n
:n uNLOAD #70 , , ;n
:n sNLOAD #71 , , ;n

:n cJSR #80 ccCODE $dep ;n
:n cJMP #81 ccCODE $dep ;n
:n cLOAD #82 ccCODE $dep ;n
:n cSTORE #83 ccCODE $dep ;n
:n cLOADB #84 ccCODE $dep ;n
:n cSTOREB #85 ccCODE $dep ;n
:n cpJSR #88 ccCODE ;n
:n cpJMP #89 ccCODE ;n
:n cpLOAD #8A ccCODE ;n
:n cpSTORE #8B ccCODE ;n
:n cpLOADB #8C ccCODE ;n
:n cpSTOREB #8D ccCODE ;n
:n cRTS #8E ccCODE ;n
:n cpBSR #8F ccCODE ;n

:n cBR #90 oder , , ;n

:n ADD #00 aluCODE ;n
:n ADC #10 aluCODE ;n

:n SBC dup P1 =n ja?
 #50
 nein:
 #30
 dann
 aluCODE ;n

:n SUB dup P1 =n ja?
 #40
 nein:

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

125 of 179

 #20
 dann
 aluCODE ;n

:n RSBC dup P1 =n ja?
 #30
 nein:
 #50
 dann
 aluCODE ;n

:n RSUB dup P1 =n ja?
 #20
 nein:
 #40
 dann
 aluCODE ;n

:n AND #60 aluCODE ;n
:n OR #70 aluCODE ;n
:n EOR #80 aluCODE ;n
:n NOP #90C0 $dep ;n

:n CMP dup P1 =n ja?
 #A0
 nein:
 #B0
 dann
 aluCODE ;n

:n RCMP dup P1 =n ja?
 #B0
 nein:
 #A0
 dann
 aluCODE ;n

:n MASK #C0 aluCODE ;n
:n CPL #D0C0 $dep ;n
:n TST #E0 aluCODE ;n
:n NEG #F0C0 $dep ;n

:n DUPL #00C1 $dep ;n
:n DEL #10C1 $dep ;n
:n SWAP #20C1 $dep ;n
:n SOT #30C1 $dep ;n
:n RTU #40C1 $dep ;n
:n RTD #50C1 $dep ;n
:n PTOR #60C1 $dep ;n
:n RTOP #70C1 $dep ;n
:n IDX #80C1 $dep ;n
:n XRP #90C1 $dep ;n

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

126 of 179

:n LSL #00C2 $dep ;n
:n LSR #10C2 $dep ;n
:n ROL #20C2 $dep ;n
:n ROR #30C2 $dep ;n
:n ASR #90C2 $dep ;n

:n PUSHPS #D0 , , ;n
:n POPPS #D1 , , ;n
:n PUSHRS #D2 , , ;n
:n POPRS #D3 , , ;n
:n SET #D4 , , ;n
:n CLEAR #D5 , , ;n

:n cIN #E2 ccCODE $dep ;n
:n cOUT #E3 ccCODE $dep ;n
:n cINB #E4 ccCODE $dep ;n
:n cOUTB #E5 ccCODE $dep ;n
:n cpIN #EA ccCODE ;n
:n cpOUT #EB ccCODE ;n
:n cpINB #EC ccCODE ;n
:n cpOUTB #ED ccCODE ;n

:n EMULATE #F0 ccCODE ;n
:n EXECUTE #F1 ccCODE ;n
:n PREPARE #F2 ccCODE ;n
:n REFRESH #F6 ccCODE ;n
:n DFX #00F8 $dep ;n
:n 2BLIT #00FB $dep ;n
:n JPPC #00FC $dep ;n
:n XB #00FD $dep ;n
:n FLAG #FF ccCODE ;n

(Jump and Branch Tools)
(---------------------)

:n sJSRbegin
 hier (push address onto IPS-X stack)
 h2inc (deposit placeholder)
;n (<fixaddr>)

:n sJSRcomplete (<fixaddr>)
 hier (<fixaddr> <saveaddr>)
 dup (<fixaddr> <saveaddr> <saveaddr>)
 rdo (<saveaddr> <saveaddr> <fixaddr>)
 $h !n (<saveaddr> <saveaddr>)
 sJSR (<saveaddr>)
 $h !n (-)
;n

:n sBRbegin
 hier (push address onto IPS-X stack)
 h2inc (deposit placeholder)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

127 of 179

;n (<fixaddr>)

:n sBRcomplete (<fixaddr>)
 dup (<fixaddr> <fixaddr>)
 02 +n (<fixaddr> <PC+2>)
 hier (<fixaddr> <PC+2> <jumpadd>)
 vert (<fixaddr> <jumpadd> <PC+2>)
 -n (<fixaddr> <offset>)
 hier (<fixaddr> <offset> <saveaddr>)
 rdu (<saveaddr> <fixaddr> <offset>)
 vert (<saveaddr> <offset> <fixaddr>)
 $h !n (<saveaddr> <offset>)
 sBR (<saveaddr>)
 $h !n (-)
;n

:n sJMPbegin
 hier (push address onto IPS-X stack)
 h2inc (deposit placeholder)
;n (<fixaddr>)

:n sJMPcomplete (<fixaddr>)
 hier (<fixaddr> <saveaddr>)
 dup (<fixaddr> <saveaddr> <saveaddr>)
 rdo (<saveaddr> <saveaddr> <fixaddr>)
 $h !n (<saveaddr> <saveaddr>)
 sJMP (<saveaddr>)
 $h !n (-)

;n

:n sBSRbegin
 hier (push address onto IPS-X stack)
 h2inc (deposit placeholder)
;n (<fixaddr>)

:n sBSRcomplete (<fixaddr>)
 dup (<fixaddr> <fixaddr>)
 02 +n (<fixaddr> <PC+2>)
 hier (<fixaddr> <PC+2> <jumpadd>)
 vert (<fixaddr> <jumpadd> <PC+2>)
 -n (<fixaddr> <offset>)
 hier (<fixaddr> <offset> <saveaddr>)
 rdu (<saveaddr> <fixaddr> <offset>)
 vert (<saveaddr> <offset> <fixaddr>)
 $h !n (<saveaddr> <offset>)
 sBSR (<saveaddr>)
 $h !n (-)
;n

:n cJMPbegin (<cc>)
 #81 , , (-) (cJMP opcode deposited)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

128 of 179

 hier (push address onto IPS-X stack)
 h2inc (leave placeholder for address)
;n (<fixaddr>)

:n cJMPend (<fixaddr>)
 hier (<fixaddr> <saveaddr>)
 vert (<saveaddr> <fixaddr>)
 $OC !n (-)
;n

:n cJMPelse (<fixaddr>)
 AL cJMPbegin (<fixaddr> <fixaddr2>)
 vert (<fixaddr2> <fixaddr>)
 cJMPend (<fixaddr2>)
;n

:n cJSRbegin (<cc>)
 #80 , , (-) (cJSR opcode deposited)
 hier (push address onto IPS-X stack)
 h2inc (leave placeholder for address)
;n (<fixaddr>)

:n cJSRcomplete (<fixaddr>)
 hier (<fixaddr> <saveaddr>)
 vert (<saveaddr> <fixaddr>)
 $OC !n (-)
;n

:n cBRbegin (<cc>)
 #90 oder , (-) (cc cBR opcode deposited)
 hier (push address onto IPS-X stack)
 #0 , (leave placeholder for offset)
;n (<fixaddr>)

:n cBRend (<fixaddr>)
 dup (<fixaddr> <fixaddr>)
 01 +n (<fixaddr> <PC+2>)
 hier (<fixaddr> <PC+2> <jumpadd>)
 vert (<fixaddr> <jumpadd> <PC+2>)
 -n (<fixaddr> <offset>)
 vert (<offset> <fixaddr>)
 $OC !b (-)
;n

:n cBRelse (<fixaddr>)
 AL cBRbegin (<fixaddr> <fixaddr2>)
 vert (<fixaddr2> <fixaddr>)
 cBRend (<fixaddr2>)
;n

(these are the traditional IPS Assembler Definitions)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

129 of 179

:n Y? cJMPbegin ;n
:n N: cJMPelse ;n
:n TH cJMPend ;n
:n BEGIN hier ;n
:n END Y? $OC !n ;n
:n TH/AGAIN vert AL END TH ;n

(End Am1601 Assembler)
(--------------------)

(IPS-F1G for Am1601)
(Copyright 2002 AMSAT-DL)
(by Karl Meinzer, James Miller,)
(Lyle Johnson & Paul Willmott)

(This program is free software; you can redistribute it)
(and/or modify it under the terms of the GNU General)
(Public License as published by the Free Software)
(Foundation; either version 2 of the License, or at)
(your option, any later version.)

(This program is distributed in the hope that it will)
(be useful, but WITHOUT ANY WARRANTY; without even the)
(implied warranty of MERCHANTABILITY or FITNESS FOR A)
(PARTICULAR PURPOSE. See the GNU General Public)
(License for more details.)

(You should have received a copy of the GNU General)
(Public License along with this program; if not, write)
(to the Free Software Foundation, Inc., 59 Temple)
(Place, Suite 330, Boston, MA 02111-1307 USA)

(Contact : vp9mu@amsat.org)

(NOTE: Lyle's stack comments have top on left)
(Paul's stack comments have top on right)

~ Compiling IPS-F1G ~ #01D5 !t (Information splash)

(IPS-F1G Memory Map)
(------------------)

(#0000 Reset Vector)
(#0004 Return Stack Underflow Vector)
(#0008 Parameter Stack Underflow Vector)
(#000C PC Odd Vector)
(#0010 Maskable Interrupt Vector)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

130 of 179

(#0100 Screen)
(#0500 Syspage)

(Syspage assignments 500-57F)
(---------------------------)

(500 ' COMPILER 520 SU0 Minutes LSW)
(501 521 SU0 Minutes MSW)
(502 0 ' ZEIG-STAPEL <KETTE> 522 SU1 10ms <0-98>)
(503 523 SU1 Seconds <0-59>)
(504 1 524 SU1 Minutes LSW)
(505 525 SU1 Minutes MSW)
(506 2 526 SU2 10ms <0-98>)
(507 527 SU2 Seconds <0-59>)
(508 3 528 SU2 Minutes LSW)
(509 529 SU2 Minutes MSW)
(50A 4 52A SU3 10ms <0-98>)
(50B 52B SU3 Seconds <0-59>)
(50C 5 52C SU3 Minutes LSW)
(50D 52D SU3 Minutes MSW)
(50E 6 52E READYFLAG)
(50F 52F LOADFLAG)
(510 7 530 $PE value)
(511 531)
(512 JUMP 532 $PI value)
(513 533)
(514 #0500 534 $P1 value)
(515 535)
(516 -- 536 $P2 value)
(517 -- 537)
(518 UHR 10ms <0-98> 538 $P3 value)
(519 UHR Seconds <0-59> 539)
(51A UHR Minutes <0-59> 53A $H value)
(51B UHR Hours <0-23> 53B)
(51C UHR Days LSW 53C $Os value)
(51D UHR Days MSW 53D)
(51E SU0 10ms <0-98> 53E $ND value)
(51F SU0 Seconds <0-59> 53F)

(#0540 - #054F reserved for 20ms use)

(540 Keyboard Input Pointer)
(541)
(542 Insert Flag)

(#0600 Reset Service Routine)

(#0650 20ms Service Routine)

(#FEFE Parameter Stack Overflow Start)
(#FFFE Return Stack Overflow Start)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

131 of 179

(Constants in the IPS-X definition list for the compilation)
(of the code and 20ms routines)

#0100 kon $$tv0 (1st TV screen line position)
#0200 kon $$tv4 (4th TV screen line position)
#0300 kon $$tv8 (8th TV screen line position)
#0100 kon $$tvs (Stack TV screen line position)
#04FF kon $$tve (Last TV screen line position)
#052E kon $$readyflag (Compiler READYFLAG)
#0530 kon $$pe ($PE address in syspage)
#0532 kon $$pi ($PI address in syspage)
#0540 kon $$kbdip (Keyboard Input Pointer)
#0542 kon $$inson (Insert Mode On Flag)
#0 kon $$kpport (Keyboard Pressed I/O Port Address)
#2 kon $$kvport (Key Pressed Value I/O Port Address)
#0650 kon $$20ms (20ms Service Routine)
:n NEXT NEF EMULATE $$20ms sJMP ;n

X>> (Enter compile mode)

#0000 $h !n
#0 hier !O hier $OC dup 1 +n #3FFF l>>> (Wipe memory)

#0000 $h !n #0600 sJMP (Reset Vector)
#0004 $h !n
#0008 $h !n
#000C $h !n
#0010 $h !n

(Fill screen buffer with spaces)
(------------------------------)

#20 $$tv0 !O $$tv0 $OC dup 1 +n #3FF l>>>

~ IPS-F1G 2002-Oct-28c ~ #02D5 $OC !t (Identifier)

#0518 $h !n (UHR)
0 , 0 , 0 , 0 , 0 , 0 ,

#051E $h !n (Stop watches)
1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ,
1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ,

(#540-#54F free for implementor's use)
(------------------------------------)

#0600 $h !n (Reset Service Routine)
#FFFE AL cNLOAD RSP POPPS (Set RSP)
#0004 AL cNLOAD RSC POPPS (Max 4 items underflow)
#FEFE AL cNLOAD PSP POPPS (Set PSP)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

132 of 179

#0004 AL cNLOAD PSC POPPS (Max 4 items underflow)
#0500 AL cNLOAD PPC POPPS (Set PPC)
AL EMULATE (Start it Running !!!)

$$20ms $h !n

(UHR & Stopwatches)

sJSRbegin (UHR)
#051E AL cNLOAD sJSRbegin (SU0 StopWatch)
#0522 AL cNLOAD sJSRbegin (SU1 StopWatch)
#0526 AL cNLOAD sJSRbegin (SU2 StopWatch)
#052A AL cNLOAD sJSRbegin (SU3 StopWatch)

$$readyflag AL cLOADB
#01 uN AND DEL EQ cJSRbegin (Keyboard Handler)

AL REFRESH
FLGE CLEAR
AL EMULATE

(The Keyboard Handler processes one key press before)
(returning control to 20ms routine.)

cJSRcomplete (Keyboard Handler)

 $$kpport AL cINB (KyP)
 #1 uN AND (KyP)
 DEL ()
 EQ cRTS (Quit if no key)

(The previous blob cursor is removed. The Blob)
(cursor uses the fact that setting the MS bit of a)
(character in the iPS screen area causes it to be)
(displayed in reverse video.)

 $$kbdip AL cLOAD (Adr)
 DUPL (Adr Adr)
 AL cpLOADB (Adr Chr)
 #7F uN AND (Adr Chr)
 SWAP (Chr Adr)
 AL cpSTOREB (-)

(Get key value from Input Port)

 $$kvport AL cIN (Chr)
 #00 uNLOAD (0 Chr)
 $$kpport AL cOUTB (Chr)

(PC Control Keys: If the key pressed is not an)
(ASCII key, e.g. the cursor keys. Then the)
(hardware returns #FF in the MSB of the keyboard)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

133 of 179

(buffer, otherwise #00.)

 DUPL (Chr Chr)
 #FF uNLOAD (Chr Chr #FF)
 XB (Chr Chr #FF00)
 P1 AND DEL (Chr)
 #02 NE cBR (Chr)

(branch to nCtrl:)
 sBRbegin (Chr)

 #FF uN AND (Chr)

(Chk71: Home)
(Move the blob cursor to the start of the IPS input)
(screen area)
(--)

 71 uN CMP (Chr)

(branch to Chk72:)
 12 NE cBR (Chr)
 DEL ()
 $$tv8 AL cNLOAD (TV8)
 $$kbdip AL cSTORE ()
(branch to PtrLim:)
 sBRbegin

(Chk72: Up Arrow)
(Move the blob cursor up one line)
(--------------------------------)

 72 uN CMP (Chr)
(branch to Chk75:)
 14 NE cBR (Chr)

 DEL ()
 $$kbdip AL cLOAD (KIP)
 64 uN SUB (KIP)
 $$kbdip AL cSTORE ()
(branch to PtrLim:)
 sBRbegin

(Chk75: Left Arrow)
(Move the blob cursor 1 character position to the)
(left.)
(--)

 75 uN CMP (Chr)
(branch to Chk75:)
 14 NE cBR (Chr)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

134 of 179

 DEL ()
 $$kbdip AL cLOAD (KIP)
 01 uN SUB (KIP)
 $$kbdip AL cSTORE ()
(branch to PtrLim:)
 sBRbegin

(Chk77: - Right Arrow)
(Move the blob cursor right 1 character position)
(---)

 77 uN CMP (Chr)
(branch to Chk79:)
 14 NE cBR (Chr)

 DEL ()
 $$kbdip AL cLOAD (KIP)
 01 uN ADD (KIP)
 $$kbdip AL cSTORE ()
(branch to PtrLim:)
 sBRbegin

(Chk79: End)
(Move the blob cursor to the end of the IPS Input)
(Area.)
(--)

 79 uN CMP (Chr)
(branch to Chk80:)
 12 NE cBR (Chr)

 DEL ()
 $$tve AL cNLOAD (TVE)
 $$kbdip AL cSTORE ()
(branch to PtrLim:)
 sBRbegin

(Chk80: - Down Arrow)
(Move the blob cursor down one line.)
(-----------------------------------)

 80 uN CMP (Chr)
(branch to Chk82:)
 14 NE cBR (Chr)

 DEL ()
 $$kbdip AL cLOAD (KIP)
 64 uN ADD (KIP)
 $$kbdip AL cSTORE ()
(branch to PtrLim:)
 sBRbegin

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

135 of 179

(Chk82: - Insert)
(Toggle the insert mode flag.)
(----------------------------)

 82 uN CMP (Chr)
(branch to Chk83:)
 14 NE cBR (Chr)

 DEL ()
 $$inson AL cLOADB (Ins)
 #01 uN EOR (~Ins)
 $$inson AL cSTOREB ()
(branch to PtrLim:)
 sBRbegin

(Chk83: - Delete)
(Delete the character under the blob cursor.)
(---)

 83 uN CMP (Chr)
(branch to Chk45:)
 48 NE cBR (Chr)

 DEL ()
 $$tve AL cNLOAD (TVE)
 $$kbdip AL cLOAD (TVE KIP)
 P0 CMP (TVE KIP)
(branch to PutSpc:)
 EQ cBRbegin (TVE KIP)

(Loop:)
 DUPL (P: KIP KIP TVE R:)
 01 uN ADD (P: KI+ KIP TVE R:)
 DUPL (P: KI+ KI+ KIP TVE R:)
 PTOR (P: KI+ KIP TVE R: KI+)
 AL cpLOADB (P: Suc KIP TVE R:)
 SWAP (P: KIP Suc TVE R: KI+)
 AL cpSTOREB (P: TVE R: KI+)
 DUPL (P: TVE TVE R: KI+)
 RTOP (P: KI+ TVE TVE R:)
 DUPL (P: KI+ KI+ TVE TVE R:)
 RTD (P: TVE KI+ KI+ TVE R:)
 P0 SUB (P: Dif KI+ TVE R:)
 DEL (P: KI+ TVE R:)
(branch to Loop:)
 -28 NE cBR (P: KI+ TVE R:)

(PutSpc:)
 cBRend
 DEL (TVE)
 32 uNLOAD (TVE 32)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

136 of 179

 SWAP (32 TVE)
 AL cpSTOREB ()
(branch to PtrLim:)

(PtrLim: INPUTPOINTER := INPUTPOINTER AND $3FF)
(offset by +#0100 for Am1601 ...)
(---)

sBRcomplete (Insert)
sBRcomplete (Down Arrow)
sBRcomplete (End)
sBRcomplete (Right Arrow)
sBRcomplete (Left Arrow)
sBRcomplete (Up Arrow)
sBRcomplete (Home)

 $$kbdip AL cLOAD (P: KIP R:)
 #100 AL cNLOAD (P: 100 KIP R:)
 DUPL (P: 100 100 KIP R:)
 RTD (P: KIP 100 100 R:)
 P1 RSUB (P: KIP 100 R:)
 #3FF AL cNLOAD (P: 3FF KIP 100 R:)
 P1 AND (P: KIP 100 R:)
 P1 ADD (P: KIP R:)
 $$kbdip AL cSTORE (P: R:)
(branch to PutBlob:)
 220 sBR ()

(nCtrl: ASCII Characters)
sBRcomplete

(CkkCR: Carriage Return / Enter - Start Compiler)
(---)

 13 uN CMP (Chr)
(branch to ChkBS:)
 14 NE cBR (Chr)

 DEL ()
 $$kbdip AL cLOAD (KIP)
 01 uN SUB (KI-)
 $$pe AL cSTORE ()
(branch to PutBlob:)
 202 sBR ()

(ChkBS: BackSpace)
(Delete the character to the left of the blob cursor)
(---)

 8 uN CMP (Chr)
(branch to Other:)
 94 NE cBR (Chr)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

137 of 179

 DEL ()
 $$kbdip AL cLOAD (P: KIP R:)
 01 uN SUB (P: KIP R:)
 #100 AL cNLOAD (P: 100 KIP R:)
 DUPL (P: 100 100 KIP R:)
 RTD (P: KIP 100 100 R:)
 P1 RSUB (P: KIP 100 R:)
 #3FF AL cNLOAD (P: 3FF KIP 100 R:)
 P1 AND (P: KIP 100 R:)
 P1 ADD (P: KIP R:)
 DUPL (P: KIP KIP R:)
 $$kbdip AL cSTORE (P: KIP R:)

 32 uNLOAD (P: 32 KIP R:)
 SWAP (P: KIP 32 R:)
 AL cpSTOREB (P: R:)

(IF InsertON THEN)
 $$inson AL cLOADB (P: Ins R:)
 01 uN AND (P: Ins R:)
 DEL (P: R:)
(branch to Other:)
 44 EQ cBR (P: R:)

(FOR Index := INPUTPOINTER TO TVE DO)
 $$tve AL cNLOAD (P: TVE R:)
 $$kbdip AL cLOAD (P: KIP TVE R:)

(Loop:)
 DUPL (P: KIP KIP TVE R:)
 01 uN ADD (P: KI+ KIP TVE R:)
 DUPL (P: KI+ KI+ KIP TVE R:)
 PTOR (P: KI+ KIP TVE R: KI+)
 AL cpLOADB (P: Suc KIP TVE R:)
 SWAP (P: KIP Suc TVE R: KI+)
 AL cpSTOREB (P: TVE R: KI+)
 DUPL (P: TVE TVE R: KI+)
 RTOP (P: KI+ TVE TVE R:)
 DUPL (P: KI+ KI+ TVE TVE R:)
 RTD (P: TVE KI+ KI+ TVE R:)
 P0 SUB (P: Dif KI+ TVE R:)
 DEL (P: KI+ TVE R:)
(branch to Loop:)
 -28 NE cBR (P: KI+ TVE R:)

 DEL (P: TVE R:)
 32 uNLOAD (P: 32 TVE R:)
 SWAP (P: TVE 32 R:)
 AL cpSTOREB (P: R:)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

138 of 179

(branch to PutBlob:)
 104 AL cBR (P: R:)

(Other: ELSE BEGIN)
(IF InsertON AND TV8<=INPUTPOINTER THEN)

 $$inson AL cLOADB (P: Ins Chr R:)
 01 uN AND (P: Ins Chr R:)
 DEL (P: Chr R:)
(branch to PutChr:)
 60 EQ cBR (P: R:)

 $$kbdip AL cLOAD (P: KIP Chr R:)
 $$tv8 AL cNLOAD (P: TV8 KIP Chr R:)
 P0 SUB (P: Dif Chr R:)
 DEL (P: Chr R:)
(branch to PutChr:)
 46 LT cBR (P: Chr R:)

(FOR Index := TVE DOWNTO INPUTPOINTER+1 DO BEGIN)
 PTOR (P: R: Chr)
 $$kbdip AL cLOAD (P: KIP R: Chr)
 01 uN ADD (P: KI+ R: Chr)
 $$tve AL cNLOAD (P: TVE KI+ R: Chr)

(Loop:)
 DUPL (P: TVE TVE KI+ R: Chr)
 01 uN SUB (P: TV- TVE KI+ R: Chr)
 DUPL (P: TV- TV- TVE KI+ R: Chr)
 PTOR (P: TV- TVE KI+ R: TV- Chr)
 AL cpLOADB (P: Pre TVE KI+ R: TV- Chr)
 SWAP (P: TVE Pre KI+ R: TV- Chr)
 AL cpSTOREB (P: KI+ R: TV- Chr)
 DUPL (P: KI+ KI+ R: TV- Chr)
 RTOP (P: TV- KI+ KI+ R: Chr)
 DUPL (P: TV- TV- KI+ KI+ R: Chr)
 RTD (P: KI+ TV- TV- KI+ R: Chr)
 P0 SUB (P: Dif TV- KI+ R: Chr)
 DEL (P: TV- KI+ R: Chr)
(branch to Loop:)
 -28 NE cBR (P: TV- KI+ R: Chr)
 DEL (P: KI+ R: Chr)
 DEL (P: R: Chr)
 RTOP (P: Chr R:)

(PutChr:)
 $$kbdip AL cLOAD (P: KIP Chr R:)
 DUPL (P: KIP KIP Chr R:)
 RTU (P: KIP Chr KIP R:)
 AL cpSTOREB (P: KIP R:)

 01 uN ADD (P: KIP R:)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

139 of 179

 #100 AL cNLOAD (P: 100 KIP R:)
 DUPL (P: 100 100 KIP R:)
 RTD (P: KIP 100 100 R:)
 P1 RSUB (P: KIP 100 R:)
 #3FF AL cNLOAD (P: 3FF KIP 100 R:)
 P1 AND (P: KIP 100 R:)
 P1 ADD (P: KIP R:)
 $$kbdip AL cSTORE (P: R:)

(PutBlob:)
(Put Blob Cursor On Screen iff not end of input)
(--)

 $$kbdip AL cLOAD (P: KIP R:)
 $$pe AL cLOAD (P: PE KIP R:)
 P0 SUB (P: Dif R:)
 DEL (P: R:)
(branch to doit:)
 08 HS cBR (P: R:)
 #01 uNLOAD (P: #01 R:)
 $$readyflag AL cSTOREB
 PC POPRS

(doit:)
 $$kbdip AL cLOAD (P: KIP R:)
 DUPL (P: KIP KIP R:)
 AL cpLOADB (P: Chr KIP R:)
 #80 uN OR (P: Chr KIP R:)
 SWAP (P: KIP Chr R:)
 AL cpSTOREB (P: R:)
 PC POPRS

sJSRcomplete (SU3 StopWatch)
sJSRcomplete (SU2 StopWatch)
sJSRcomplete (SU1 StopWatch)
sJSRcomplete (SU0 StopWatch)

(STOPWATCH) (P: SU+0 R: RetAdr)
 DUPL (P: SU+0 SU+0 R: RetAdr)
 AL cpLOADB (P: mSec SU+0 R: RetAdr)
(if LSB is set, then timer has already expired)
 #1 uN TST (P: mSec SU+0 R: RetAdr)
 #48 EQ cBR (P: mSec SU+0 R: RetAdr)
(stopwatch has expired, clean stack and exit)
 DEL (P: SU+0 R: RetAdr)
 DEL (P: R: RetAdr)
 PC POPRS

(timer not expired, check if mSec is 0)
 #0 uN CMP (P: mSec SU+0 R: RetAdr)
 #08 EQ cBR (P: mSec SU+0 R: RetAdr)
(mSec not expired, decrement and exit)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

140 of 179

 #2 uN SUB (P: mSec SU+0 R: RetAdr)
 SWAP (P: SU+0 mSec R: RetAdr)
 AL cpSTOREB (P: R: RetAdr)
 PC POPRS

(mSec at 0, reload and check Sec)
 98 uN ADD (P: 98 SU+0 R: RetAdr)
 SOT (P: SU+0 98 SU+0 R: RetAdr)
 AL cpSTOREB (P: SU+0 R: RetAdr)
 #1 uN ADD (P: SU+1 R: RetAdr)
 DUPL (P: SU+1 SU+1 R: RetAdr)
 AL cpLOADB (P: Sec SU+1 R: RetAdr)
(Sec 0 ?)
 #0 uN CMP (P: Sec SU+1 R: RetAdr)
 #08 EQ cBR (P: Sec SU+1 R: RetAdr)

(Sec not 0, decrement and exit)
 #1 uN SUB (P: Sec SU+1 R: RetAdr)
 SWAP (P: SU+1 Sec R: RetAdr)
 AL cpSTOREB (P: R: RetAdr)
 PC POPRS
(Sec at 0, reload and check min)
 59 uN ADD (P: 59 SU+1 R: RetAdr)
 SOT (P: SU+1 59 SU+1 R: RetAdr)
 AL cpSTOREB (P: SU+1 R: RetAdr)
 #1 uN ADD (P: SU+2 R: RetAdr)
 DUPL (P: SU+2 SU+2 R: RetAdr)
 AL cpLOAD (P: min SU+2 R: RetAdr)
(Min 0 ?)
 #0 uN CMP (P: min SU+2 R: RetAdr)
 #08 EQ cBR (P: min SU+2 R: RetAdr)
(Min not 0, decrement and exit)
 #1 uN SUB (P: min SU+2 R: RetAdr)
 SWAP (P: SU+0 min R: RetAdr)
 AL cpSTORE (P: R: RetAdr)
 PC POPRS

(timer just expired, clean up and set expired flag in mSec)
 DEL (P: SU+2 R: RetAdr)
 #2 uN SUB (P: SU+0 R: RetAdr)
 #1 uNLOAD (P: 1 SU+0 R: RetAdr)
 SWAP (P: SU+0 1 R: RetAdr)
 AL cpSTOREB (P: R: RetAdr)
 PC POPRS

sJSRcomplete (UHR)

#0518 AL cNLOAD (P: UHR+0 R: RetAdr)
 DUPL (P: UHR+0 UHR+0 R: RetAdr)
 AL cpLOADB (P: mSec UHR+0 R: RetAdr)
(if mSec is 98, then update and check Sec)
 98 uN CMP (P: mSec UHR+0 R: RetAdr)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

141 of 179

 #08 EQ cBR (P: mSec UHR+0 R: RetAdr)
(else inc mSec by 2 and exit)
 #2 uN ADD (P: mSec UHR+0 R: RetAdr)
 SWAP (P: UHR+0 mSec R: RetAdr)
 AL cpSTOREB
 PC POPRS

(update mSec and check Sec)
 DEL (P: 0 R: RetAdr)
 #0 uNLOAD (P: 0 UHR+0 R: RetAdr)
 SOT (P: UHR+0 0 UHR+0 R: RetAdr)
 AL cpSTOREB (P: UHR+0 R: RetAdr)
 #1 uN ADD (P: UHR+1 R: RetAdr)
 DUPL (P: UHR+1 UHR+1 R: RetAdr)
 AL cpLOADB (P: Sec UHR+1 R: RetAdr)
(if Sec is 59, then update and check Min)
 59 uN CMP (P: Sec UHR+1 R: RetAdr)
 #08 EQ cBR (P: Sec UHR+1 R: RetAdr)
(else inc Sec by 1 and exit)
 #1 uN ADD (P: Sec UHR+1 R: RetAdr)
 SWAP (P: UHR+1 Sec R: RetAdr)
 AL cpSTOREB
 PC POPRS

(update Sec and check Min)
 DEL (P: R: RetAdr)
 #0 uNLOAD (P: 0 UHR+1 R: RetAdr)
 SOT (P: UHR+1 0 UHR+1 R: RetAdr)
 AL cpSTOREB (P: UHR+1 R: RetAdr)
 #1 uN ADD (P: UHR+2 R: RetAdr)
 DUPL (P: UHR+2 UHR+2 R: RetAdr)
 AL cpLOADB (P: Min UHR+2 R: RetAdr)
(if Min is 59, then update and check Hour)
 59 uN CMP (P: Min UHR+2 R: RetAdr)
 #08 EQ cBR (P: Min UHR+2 R: RetAdr)
(else inc Min by 1 and exit)
 #1 uN ADD (P: Min UHR+2 R: RetAdr)
 SWAP (P: UHR+2 Min R: RetAdr)
 AL cpSTOREB
 PC POPRS

(update Min and check Hour)
 DEL (P: R: RetAdr)
 #0 uNLOAD (P: 0 UHR+2 R: RetAdr)
 SOT (P: UHR+2 0 UHR+2 R: RetAdr)
 AL cpSTOREB (P: UHR+2 R: RetAdr)
 #1 uN ADD (P: UHR+3 R: RetAdr)
 DUPL (P: UHR+3 UHR+3 R: RetAdr)
 AL cpLOADB (P: Hour UHR+3 R: RetAdr)
(if Hour is 23, then update and inc Day)
 23 uN CMP (P: Hour UHR+3 R: RetAdr)
 #08 EQ cBR (P: Hour UHR+3 R: RetAdr)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

142 of 179

(else inc Hour by 1 and exit)
 #1 uN ADD (P: Hour UHR+3 R: RetAdr)
 SWAP (P: UHR+3 Hour R: RetAdr)
 AL cpSTOREB
 PC POPRS

(update Hour and increment Day)
 DEL
 #0 uNLOAD (P: 0 UHR+3 R: RetAdr)
 SOT (P: UHR+3 0 UHR+3 R: RetAdr)
 AL cpSTOREB (P: UHR+3 R: RetAdr)
 #1 uN ADD (P: UHR+4 R: RetAdr)
 DUPL (P: UHR+4 UHR+4 R: RetAdr)
 AL cpLOAD (P: Days UHR+4 R: RetAdr)
 #1 uN ADD (P: Days UHR+4 R: RetAdr)
 AL cpSTORE
 PC POPRS

(Code Routines)
(-------------)

(DEFEX) hier $ccodes !n DFX NEXT
(VAREX) hier $ccodes 02 +n !n HP PUSHPS NEXT
(CONSEX) hier $ccodes 04 +n !n HP PUSHPS AL cpLOAD NEXT

code RUMPELSTILZCHEN NEXT
code RETEX PPC POPRS NEXT

code $JEEX (P Index Limit R -)
(enter with limit and index on P stack)
 JPPC (P Index Limit R -)
 PTOR (P Index R Limit)
 IDX (P Index Limit R Limit)
 P1 RCMP (P Index Limit R Limit)
(IF I<=L THEN) (Limit-Index)
 HI cBRbegin (P Index Limit R Limit)
 SWAP (P Limit Index R Limit)
 PTOR (P Limit R Limit Index)
 DEL (P R Limit Index)
 JPPC (P R Limit Index)
(exit with index and limit on R)
 cBRelse
 RTOP (P Index Limit Limit R -)
 DEL (P Index Limit R -)
 DEL (P Index R -)
 DEL (P - R -)
 PPC PUSHPS (P PPC R -)
 #2 uN ADD (P PPC+2 R -)
 PPC POPPS (P - R -)
(exit with stacks empty and PPC pointing to next word)
 cBRend

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

143 of 179

 NEXT

code +LOOPEX (P Inc R Limit Index)
 RTOP (P Inc Index R Limit)
 P1 ADD (P Index R Limit)
 IDX (P Index Limit R Limit)
 P1 RCMP (P Index Limit R Limit)
(IF I<=L THEN)
 HI cBRbegin (P Index Limit R Limit)
 SWAP (P Limit Index R Limit)
 PTOR (P Limit R Limit Index)
 DEL (P R Limit Index)
 JPPC (P R Limit Index)
(exit with index and limit on R)
 cBRelse
 RTOP (P Index Limit Limit R -)
 DEL (P Index Limit R -)
 DEL (P Index R -)
 DEL (P - R -)
 PPC PUSHPS (P PPC R -)
 #2 uN ADD (P PPC+2 R -)
 PPC POPPS (P - R -)
(exit with stacks empty and PPC pointing to next word)
 cBRend
 NEXT

code LOOPEX (P - R Limit Index)
 RTOP (P Index R Limit)
 #01 uN ADD (P Index R Limit)
 IDX (P Index Limit R Limit)
 P1 RCMP (P Index Limit R Limit)
(IF I<=L THEN)
 HI cBRbegin (P Index Limit R Limit)
 SWAP (P Limit Index R Limit)
 PTOR (P Limit R Limit Index)
 DEL (P R Limit Index)
 JPPC (P R Limit Index)
(exit with index and limit on R)
 cBRelse
 RTOP (P Index Limit Limit R -)
 DEL (P Index Limit R -)
 DEL (P Index R -)
 DEL (P - R -)
 PPC PUSHPS (P PPC R -)
 #2 uN ADD (P PPC+2 R -)
 PPC POPPS (P - R -)
(exit with stacks empty and PPC pointing to next word)
 cBRend
 NEXT

code 2BLITERAL 2BLIT NEXT

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

144 of 179

code BRONZ
 #01 uN AND DEL NE cBRbegin
 JPPC
 cBRelse
 PPC PUSHPS
 #2 uN ADD
 PPC POPPS
 cBRend
 NEXT

code @ AL cpLOAD NEXT
code @B AL cpLOADB NEXT
code ! AL cpSTORE NEXT
code !B AL cpSTORE NEXT
code JUMP JPPC NEXT
code + P1 ADD NEXT
code - P0 SUB NEXT
code NICHT CPL NEXT
code UND P1 AND NEXT
code ODER P1 OR NEXT
code EXO P1 EOR NEXT
code BIT P0 MASK NEXT
code CHS NEG NEXT
code WEG DEL NEXT
code PWEG DEL DEL NEXT
code DUP DUPL NEXT
code PDUP SOT SOT NEXT
code VERT SWAP NEXT
code ZWO SOT NEXT
code RDU RTU NEXT
code RDO RTD NEXT
code I IDX NEXT
code S>R PTOR NEXT
code R>S RTOP NEXT

code =0 #0 sN CMP EQ FLAG NEXT
code <0 #0 sN CMP LT FLAG NEXT
code >0 #0 sN CMP GT FLAG NEXT
code >=U P0 SUB LS FLAG NEXT

code F-VERGL (Field Compare, Unsigned, 1 to 256 bytes)
 (P: n a2 a1 R:)
(assume fields are equal, set t=1 for initial comparison)
 #1 uNLOAD (P: t n a2 a1 R:)
 SWAP (P: n t a2 a1 R:)

(a:)
 PTOR (P: t a2 a1 R: n)
 PTOR (P: a2 a1 R: t n)
 DUPL (P: a2 a2 a1 R: t n)
 AL cpLOADB (P: <a2> a2 a1 R: t n)
 RTD (P: a1 <a2> a2 R: t n)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

145 of 179

 DUPL (P: a1 a1 <a2> a2 R: t n)
 AL cpLOADB (P: <a1> a1 <a2> a2 R: t n)
 RTD (P: <a2> <a1> a1 a2 R: t n)
 P0 SUB (P: dif a1 a2 R: t n)
 DEL (P: a1 a2 R: t n)

(if they are equal, skip further testing for this pair)
(banch to label c:)
 #0C EQ cBR (P: a1 a2 R: t n)

(they are not equal, so t must be updated)
 RTOP (P: t a1 a2 R: n)
 DEL (P: a1 a2 R: n)
 #0 uNLOAD (P: t a1 a2 R: n)

(branch to label b: if a1<a2, else t=0)
 #02 CS cBR (P: t a1 a2 R: n)

(a1>a2, t=2)
 #2 uN ADD (P: t a1 a2 R: n)
 PTOR (P: a1 a2 R: t n)

(c: equal or t updated)
 #1 uNLOAD (P: 1 a1 a2 R: t n)
 P1 ADD (P: a1+ a2 R: t n)
 SWAP (P: a2 a1+ R: t n)
 #1 uNLOAD (P: 1 a2 a1+ R: t n)
 P1 ADD (P: a2+ a1+ R: t n)
 RTOP (P: t a2+ a1+ R: n)
 RTOP (P: n t a2+ a1+ R:)
 #1 uN SUB (P: n t a2+ a1+ R:)
 #FF uN AND (P: n t a2+ a1+ R:)

(branch to label a: if all elements not checked)
 #CA NE cBR (P: n t a2+ a1+ R:)

(done, clean up stack and exit)
 DEL (P: t a2+ a1+ R:)
 RTU (P: a2+ a1+ t R:)
 DEL (P: a1+ t R:)
 DEL (P: t R:)

 NEXT (P: t R:)

code SBIT
 AL cpLOAD
 SWAP
 P0 MASK
 P1 OR
 NEXT

code CBIT

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

146 of 179

 AL cpLOAD
 SWAP
 P0 MASK
 CPL
 P1 AND
 NEXT

code TBIT
 AL cpLOAD
 SWAP
 P0 MASK
 P1 AND
 NE FLAG
 NEXT

code >>> (Field Transport up to 256 bytes)
 (P: b ad as R:)
(a:)
 PTOR (P: ad as R: b)
 DUPL (P: ad ad as R: b)
 RTD (P: as ad ad R: b)
 DUPL (P: as as ad ad R: b)
 AL cpLOADB (P: <as> as ad ad R: b)
 RTD (P: ad <as> as ad R: b)
 AL cpSTOREB (P: as ad R: b)
 #1 uN ADD (P: as ad R: b)
 SWAP (P: ad as R: b)
 #1 uN ADD (P: ad as R: b)
 RTOP (P: b ad as R:)
 #1 uN SUB (P: b ad as R:)
 #FF uN AND (P: b ad as R:)
(branch to label a:)
 #E4 NE cBR (P: b ad as R:)
 DEL (P: ad as R:)
 DEL (P: as R:)
 DEL (P: R:)

 NEXT

code $TUE
 HP POPPS
 AL EXECUTE

code $IPSETZEN
 $$kbdip sSTORE
 DEL
 NEXT

code $PSHOLEN
 PSC PUSHPS
 NEXT

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

147 of 179

(this routine assumes that it is to be used to clear or)
(reset the stack to empty, after a call to CLS or by an)
(underflow in the compiler. The overflow area is always)
(reset on each call, ... so take care using this routine)
(for anything else!)

code $PSSETZEN
 PSC POPPS
 #FEFE AL cNLOAD PSP POPPS (Set PSP)
 NEXT

(32-bit add)
(expects the two values to be added to be present on the)
(stack, high byte on top)
(returns the 32-bit result, high byte on top)

code P+ (A + B)
 (P: Bh Bl Ah Al R:)
 PTOR (P: Bl Ah Al R: Bh)
 RTD (P: Al Bl Ah R: Bh)
 P1 ADD (P: Cl Ah R: Bh)
 RTOP (P: Bh Cl Ah R:)
 RTD (P: Ah Bh Cl R:)
 P1 ADC (P: Ch Cl R:)
 NEXT

(32-bit subtract)
(Expects the subtrahend on the top of the stack and the)
(minuend below it)
(The difference, minuend - subtrahend, is returned on)
(the top of the stack, high byte on top)

code P- (A - B)
 (P: Bh Bl Ah Al R:)
 PTOR (P: Bl Ah Al R: Bh)
 RTD (P: Al Bl Ah R: Bh)
 P0 SUB (P: Cl Ah R: Bh)
 RTOP (P: Bh Cl Ah R:)
 RTD (P: Ah Bh Cl R:)
 P0 SBC (P: Ch Cl R:)
 NEXT

code P* (A * B)
 (P: Al Bl R:)
 PTOR (P: Bl R: Al)
 #0 uNLOAD (P: Bh Bl R: Al)
 DUPL (P: Cl Bh Bl R: Al)
 DUPL (P: Ch Cl Bh Bl R: Al)
(a:)
 RTOP (P: Al Ch Cl Bh Bl R:)
 #0 uN CMP (P: Al Ch Cl Bh Bl R:)
 #2C EQ cBR (P: Al Ch Cl Bh Bl R:)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

148 of 179

 (branch to label c:)

 LSR (P: Al Ch Cl Bh Bl R:)
 PTOR (P: Ch Cl Bh Bl R: Al)
 #14 CC cBR (P: Ch Cl Bh Bl R: Al)
 (branch to label b:)

 PTOR (P: Cl Bh Bl R: Ch Al)
 PTOR (P: Bh Bl R: Cl Ch Al)
 SOT (P: Bl Bh Bl R: Cl Ch Al)
 SOT (P: Bh Bl Bh Bl R: Cl Ch Al)
 RTOP (P: Cl Bh Bl Bh Bl R: Ch Al)
 RTD (P: Bl Cl Bh Bh Bl R: Ch Al)
 P1 ADD (P: Cl Bh Bh Bl R: Ch Al)
 RTOP (P: Ch Cl Bh Bh Bl R: Al)
 RTD (P: Bh Ch Cl Bh Bl R: Al)
 P1 ADC (P: Ch Cl Bh Bl R: Al)
(b:)
 PTOR (P: Cl Bh Bl R: Ch Al)
 PTOR (P: Bh Bl R: Cl Ch Al)
 SWAP (P: Bl Bh R: Cl Ch Al)
 LSL (P: Bl Bh R: Cl Ch Al)
 SWAP (P: Bh Bl R: Cl Ch Al)
 ROL (P: Bh Bl R: Cl Ch Al)
 RTOP (P: Cl Bh Bl R: Ch Al)
 RTOP (P: Ch Cl Bh Bl R: Al)
 #CE AL cBR (P: Ch Cl Bh Bl R: Al)
 (branch to label a:)
(c:)
 DEL (P: Ch Cl Bh Bl R:)
 PTOR (P: Cl Bh Bl R: Ch)
 PTOR (P: Bh Bl R: Cl Ch)
 DEL (P: Bl R: Cl Ch)
 DEL (P: R: Cl Ch)
 RTOP (P: Cl R: Ch)
 RTOP (P: Ch Cl R:)

 NEXT

code P/MOD (P: D Nh Nl R:)
(align divisor with quotient)
 #0 uNLOAD (P: Dl Dh Nh Nl R:)
 SWAP (P: Dh Dl Nh Nl R:)
 SOT (P: pl Dh Dl Nh Nl R:)
(place marker)

 #1 uNLOAD (P: ph pl Dh Dl Nh Nl R:)
(initialize quotient)
 #0 uNLOAD (P: ql ph pl Dh Dl Nh Nl R:)
 DUPL (P: qh ql ph pl Dh Dl Nh Nl R:)
 PTOR (P: ql ph pl Dh Dl Nh Nl R: qh)
 PTOR (P: ph pl Dh Dl Nh Nl R: ql qh)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

149 of 179

 PTOR (P: pl Dh Dl Nh Nl R: ph ql qh)
 PTOR (P: Dh Dl Nh Nl R: pl ph ql qh)
(repeat:)
(if N>=D)
 RTD (P: Nh Dh Dl Nl R: pl ph ql qh)
 P0 CMP (P: Nh Dh Dl Nl R: pl ph ql qh)
(branch to qnupdate)
 #0E HI cBR (P: Nh Dh Dl Nl R: pl ph ql qh)
 #48 LO cBR (P: Nh Dh Dl Nl R: pl ph ql qh)
 PTOR (P: Dh Dl Nl R: Nh pl ph ql qh)
 PTOR (P: Dl Nl R: Dh Nh pl ph ql qh)
 P1 RCMP (P: Dl Nl R: Dh Nh pl ph ql qh)
 RTOP (P: Dh Dl Nl R: Nh pl ph ql qh)
 RTOP (P: Nh Dh Dl Nl R: pl ph ql qh)
 #3C LO cBR (P: Nh Dh Dl Nl R: pl ph ql qh)
(branch to shift)
(qnupdate:)
 RTOP (P: pl Nh Dh Dl Nl R: ph ql qh)
 DUPL (P: pl pl Nh Dh Dl Nl R: ph ql qh)
 RTOP (P: ph pl pl Nh Dh Dl Nl R: ql qh)
 SWAP (P: pl ph pl Nh Dh Dl Nl R: ql qh)
 RTOP (P: ql pl ph pl Nh Dh Dl Nl R: qh)
 P0 ADD (P: ql ph pl Nh Dh Dl Nl R: qh)
 SWAP (P: ph ql pl Nh Dh Dl Nl R: qh)
 DUPL (P: ph ph ql pl Nh Dh Dl Nl R: qh)
 RTOP (P: qh ph ph ql pl Nh Dh Dl Nl R:)
 P0 ADC (P: qh ph ql pl Nh Dh Dl Nl R:)
 PTOR (P: ph ql pl Nh Dh Dl Nl R: qh)
 SWAP (P: ql ph pl Nh Dh Dl Nl R: qh)
 PTOR (P: ph pl Nh Dh Dl Nl R: ql qh)
 PTOR (P: pl Nh Dh Dl Nl R: ph ql qh)
 PTOR (P: Nh Dh Dl Nl R: pl ph ql qh)
 RTU (P: Dh Dl Nh Nl R: pl ph ql qh)
 SOT (P: Dl Dh Dl Nh Nl R: pl ph ql qh)
 SOT (P: Dh Dl Dh Dl Nh Nl R: pl ph ql qh)
 PTOR (P: Dl Dh Dl Nh Nl R: Dh pl ph ql qh)
 PTOR (P: Dh Dl Nh Nl R: Dl Dh pl ph ql qh)
 PTOR (P: Dl Nh Nl R: Dh Dl Dh pl ph ql qh)
 RTD (P: Nl Dl Nh R: Dh Dl Dh pl ph ql qh)
 P1 RSUB (P: Nl Nh R: Dh Dl Dh pl ph ql qh)
 RTOP (P: Dh Nl Nh R: Dl Dh pl ph ql qh)
 RTD (P: Nh Dh Nl R: Dl Dh pl ph ql qh)
 P1 RSBC (P: Nh Nl R: Dl Dh pl ph ql qh)
 RTOP (P: Dl Nh Nl R: Dh pl ph ql qh)
 SWAP (P: Nh Dl Nl R: Dh pl ph ql qh)
 RTOP (P: Dh Nh Dl Nl R: pl ph ql qh)
 SWAP (P: Nh Dh Dl Nl R: pl ph ql qh)

(shift:)
 SWAP (P: Dh Nh Dl Nl R: pl ph ql qh)
 LSR (P: Dh Nh Dl Nl R: pl ph ql qh)
 RTD (P: Dl Dh Nh Nl R: pl ph ql qh)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

150 of 179

 ROR (P: Dl Dh Nh Nl R: pl ph ql qh)
 SWAP (P: Dh Dl Nh Nl R: pl ph ql qh)
 RTOP (P: pl Dh Dl Nh Nl R: ph ql qh)
 RTOP (P: ph pl Dh Dl Nh Nl R: ql qh)
 LSR (P: ph pl Dh Dl Nh Nl R: ql qh)
 PTOR (P: pl Dh Dl Nh Nl R: ph ql qh)
 ROR (P: pl Dh Dl Nh Nl R: ph ql qh)
(done? branch to chkerr)
 #04 EQ cBR (P: pl Dh Dl Nh Nl R: ph ql qh)
 PTOR (P: Dh Dl Nh Nl R: pl ph ql qh)
(not done - branch to repeat)
 #96 AL cBR (P: Dh Dl Nh Nl R: pl ph ql qh)

(chkerr:)
 DEL (P: Dh Dl Nh Nl R: ph ql qh)
 DEL (P: Dl Nh Nl R: ph ql qh)
 DEL (P: Nh Nl R: ph ql qh)
 RTOP (P: ph Nh Nl R: ql qh)
 DEL (P: Nh Nl R: ql qh)
 RTOP (P: ql Nh Nl R: qh)
 RTOP (P: qh ql Nh Nl R:)
 #0 uN RSUB (P: qh ql Nh Nl R:)
 DEL (P: ql Nh Nl R:)
(branch to error)
 #0A NE cBR (P: ql Nh Nl R:)
(OK:)
 SWAP (P: Nh ql Nl R:)
 DEL (P: ql Nl R:)
 SWAP (P: Nl ql R:)

 NEXT (P: rem quo)

(error:)
 DEL (P: Nh Nl R:)
 DEL (P: Nl R:)
 DEL (P: R:)
 #FF sNLOAD (P: quo)
 #0 uNLOAD (P: rem quo)

 NEXT (P: rem quo)

code $POLYNAME (P: ch 0.C B.A R:)

 PTOR (P: 0.C B.A R: ch)
 SWAP (P: B.A 0.C R: ch)
 DUPL (P: B.A B.A 0.C R: ch)
 #FF uN AND (P: 0.A B.A 0.C R: ch)
 RTU (P: B.A 0.C 0.A R: ch)
 XB (P: A.B 0.C 0.A R: ch)
 #FF uN AND (P: 0.B 0.C 0.A R: ch)
 XB (P: B.0 0.C 0.A R: ch)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

151 of 179

 P1 OR (P: B.C 0.A R: ch)
 SWAP (P: 0.A B.C R: ch)
 SOT (P: B.C 0.A B.C R: ch)
 DUPL (P: B.C B.C 0.A B.C R: ch)
 LSR (P: B>1.C>1 B.C 0.A B.C R: ch)
 DUPL (P: B>1.C>1 B>1.C>1 B.C 0.A B.C R: ch)
 LSR (P: B>2.C>2 B>1.C>1 B.C 0.A B.C R: ch)
 P1 EOR (P: BxC B.C 0.A B.C R: ch)
 P1 EOR (P: BxC 0.A B.C R: ch)
 PTOR (P: 0.A B.C R: BxC ch)
 SOT (P: B.C 0.A B.C R: BxC ch)
 SOT (P: 0.A B.C 0.A B.C R: BxC ch)
 SWAP (P: B.C 0.A 0.A B.C R: BxC ch)
 LSL (P: B<1.C<1 0.A 0.A B.C R: BxC ch)
 SWAP (P: 0.A B<1.C<1 0.A B.C R: BxC ch)
 ROL (P: 0<1.A<1 B<1.C<1 0.A B.C R: BxC ch)
 #FF uN AND (P: 0.A<1 B<1.C<1 0.A B.C R: BxC ch)
 XB (P: A.0<1 B<1.C<1 0.A B.C R: BxC ch)
 SWAP (P: B<1.C<1 A.0<1 0.A B.C R: BxC ch)
 XB (P: C<1.B<1 A.0<1 0.A B.C R: BxC ch)
 #FF uN AND (P: 0.B<1 A.0<1 0.A B.C R: BxC ch)
 P1 OR (P: A<1.B<1 0.A B.C R: BxC ch)
 RTOP (P: BxC A<1.B<1 0.A B.C R: ch)
 P1 EOR (P: BxC 0.A B.C R: ch)
 RTOP (P: ch BxC 0.A B.C R:)
 #FF uN AND (P: ch BxC 0.A B.C R:)
 P1 EOR (P: BxC 0.A B.C R:)
 #FF uN AND (P: 0.xC 0.A B.C R:)
 XB (P: xC.0 0.A B.C R:)
 P1 OR (P: xC.A B.C R:)
 SWAP (P: B.C xC.A R:)
 LSL (P: B<1.C<1 xC.A R:)
 SWAP (P: xC.A B<1.C<1 R:)
 ROL (P: xC<1.A<1 B<1.C<1 R:)
 XB (P: A<1.xC<1 B<1.C<1 R:)
 SWAP (P: B<1.C<1 A<1.xC<1 R:)
 XB (P: C<1.B<1 A<1.xC<1 R:)
 #FF uN AND (P: 0.B<1 A<1.xC<1 R:)

 NEXT

code CYC2 (P: 0.ch A.B R:)
 #FF uN AND (P: 0.ch A.B R:)
 XB (P: ch.0 A.B R:)
 SWAP (P: A.B ch.0 R:)
 XB (P: B.A ch.0 R:)
 #8 uNLOAD (P: cnt B.A ch.0 R:)

(a: LOOP)
 PTOR (P: B.A ch.0 R: cnt)
 SOT (P: ch.0 B.A ch.0 R: cnt)
 P1 EOR (P: cXba ch.0 R: cnt)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

152 of 179

(set flag if MSB 1)
 MI FLAG (P: 0|1 cXba ch.0 R: cnt)
 PTOR (P: cXba ch.0 R: 0|1 cnt)
 LSL (P: cXba ch.0 R: 0|1 cnt)
 SWAP (P: ch.0 cXba R: 0|1 cnt)
 LSL (P: ch.0 cXba R: 0|1 cnt)
 SWAP (P: cXba ch.0 R: 0|1 cnt)
 RTOP (P: 0|1 cXba ch.0 R: cnt)
 #1 uN AND (P: 0|1 cXba ch.0 R: cnt)
 DEL (P: cXba ch.0 R: cnt)

(branch to label b if MSB 0)
 #6 EQ cBR (P: cXba ch.0 R: cnt)
 #1021 AL cNLOAD (P: 1021 cXba ch.0 R: cnt)
 P1 EOR (P: cXba ch.0 R: cnt)

(b: test LOOP CNT to see if we are done)
 RTOP (P: cnt cXba ch.0 R:)
 #1 uN SUB (P: cnt cXba ch.0 R:)

(repeat loop if cnt <> 0)
 #DA NE cBR (P: cnt cXba ch.0 R:)

(tidy up and return result in correct byte order)
 RTU (P: ch.0 cnt cXba R:)
 DEL (P: cnt cXba R:)
 DEL (P: cXba R:)
 XB (P: A.B R:)

 NEXT (P: A.B R:)

code TR-LOOP (not required for now)
(** TODO **)
 NEXT

code RP-LOOP (not required for now)
(** TODO **)
 NEXT

code 3V3 (P: A B C D E F R:)
 PTOR (P: B C D E F R: A)
 RTD (P: D B C E F R: A)
 XRP (P: A B C E F R: D)
 PTOR (P: B C E F R: A D)
 RTD (P: E B C F R: A D)
 XRP (P: A B C F R: E D)
 PTOR (P: B C F R: A E D)
 RTD (P: F B C R: A E D)
 XRP (P: A B C R: F E D)
 RTOP (P: F A B C R: E D)
 RTOP (P: E F A B C R: D)
 RTOP (P: D E F A B C R:)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

153 of 179

 NEXT

(IPS-F1G)
(-------)

#0518 kon UHR
#051E kon SU0
#0522 kon SU1
#0526 kon SU2
#052A kon SU3
#0502 kon KETTE

0 kon 0 1 kon 1 2 kon 2 4 kon 4
'n 2BLITERAL #0 'n BRONZ 'n JUMP 'n $JEEX 'n LOOPEX
'n +LOOPEX 'n RETEX $ccodes 6 +n 8 !fk

(IPS general definitions)

:n > - >0 ;n :n <> - =0 NICHT ;n
:n = - =0 ;n :n >= - <0 NICHT ;n
:n < - <0 ;n :n <= - >0 NICHT ;n
 :n <>0 =0 NICHT ;n
:n * P* WEG ;n :n P/ P/MOD WEG ;n
:n /MOD #0 VERT P/MOD ;n :n / /MOD WEG ;n
:n MOD /MOD VERT WEG ;n :n +! DUP @ RDO + VERT ! ;n

(Compiler constants)

#02C0 kon SYSLINE (Posn. buffer for messages)
#052E kon READYFLAG (Compiler free to process input)
#052F kon LOADFLAG (Input coming from file)
#0530 kon $PE (Pointer to end of input)
#0532 kon $PI (Compiler read pointer)
#0534 kon $P1 (Compiler parsing position)
#0536 kon $P2 (End of block reached flag)
#0538 kon $P3 (Link pointer for $SUCH)
#053A kon $H (Pointer to memory position)

#0004 kon $SL (Stack limit)
#FF00 kon $ML (Memory limit 64K)

#0000 kon $LL (End of IPS)

#0100 kon TV0 (1st TV screen line position)
#0200 kon TV4 (4th TV screen line position)
#0300 kon TV8 (8th TV screen line position)
#0100 kon $TVS (Stack TV screen line position)
#04FF kon $TVE (Last TV screen line position)

$ccodes @n kon DEFEX
$ccodes @n 02 +n kon VAREX

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

154 of 179

$ccodes @n 04 +n kon CONSEX

(The Compiler)
(------------)

#0004 feld $ND
#0001 var $RS
#0000 var $F1
#0000 var $F2
#0000 var $KK
#0000 var BASIS
#0000 var BEM
#0001 var BEA
#0000 var EINGABEZAHL
#0000 var Z-LESEN
#0000 var COMPILEFLAG
#0000 var $V1
#0000 var LINK

(Error messages)
(--------------)

(Default language Alternative language)

16 feld STACKMESSAGE 16 feld L-STACKMESSAGE
16 feld MEMMESSAGE 16 feld L-MEMMESSAGE
16 feld NAMEMESSAGE 16 feld L-NAMEMESSAGE
16 feld STRUCMESSAGE 16 feld L-STRUCMESSAGE
16 feld TEXTMESSAGE 16 feld L-TEXTMESSAGE
16 feld RSMESSAGE 16 feld L-RSMESSAGE

~ SPEICHER VOLL ! ~ 'n MEMMESSAGE 02 +n $OC !t
~ MEMORY FULL ! ~ 'n L-MEMMESSAGE 02 +n $OC !t
~ NAME FEHLT ! ~ 'n NAMEMESSAGE 02 +n $OC !t
~ NAME MISSING ! ~ 'n L-NAMEMESSAGE 02 +n $OC !t
~ STAPEL LEER ! ~ 'n STACKMESSAGE 02 +n $OC !t
~ STACK EMPTY ! ~ 'n L-STACKMESSAGE 02 +n $OC !t
~ STRUKTURFEHLER ! ~ 'n STRUCMESSAGE 02 +n $OC !t
~ STRUCTURE ERROR! ~ 'n L-STRUCMESSAGE 02 +n $OC !t
~ TEXTFEHLER ! ~ 'n TEXTMESSAGE 02 +n $OC !t
~ TEXT-ERROR ! ~ 'n L-TEXTMESSAGE 02 +n $OC !t
~ UNZUL. NAME ! ~ 'n RSMESSAGE 02 +n $OC !t
~ DUPLICATE NAME ! ~ 'n L-RSMESSAGE 02 +n $OC !t

(Compiler definitions)
(--------------------)

:n INCR DUP @ 1 + VERT ! ;n

:n HIER $H @ ;n

:n H2INC HIER 2 + $H ! ;n

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

155 of 179

:n $DEP HIER ! H2INC ;n

:n $CEN DUP $IPSETZEN DUP @B #80 ODER ZWO !B
 $PI ! $TVE $PE ! 0 READYFLAG !B ;n

:n IE $P1 @ DUP $PI @ 1 - je I @B #80 EXO I !B
 nun $CEN WEG ;n

#0 kon $LANG (Messages language switch)

:n SYSWRITE $LANG + SYSLINE 16 >>> 0 IE ;n

:n L>>> anfang DUP 256 > ja? 256 - S>R PDUP 256 >>>
 256 + VERT 256 + VERT R>S
 dann/nochmal DUP >0 ja? >>>
 nein: PWEG WEG
 dann ;n

(:n $SUCH LINK @ $P3 ! $SCODE ;n)

:n $SUCH LINK @
 anfang DUP @B #3F UND $ND @B = ZWO 1 + $ND 1 +
 3 F-VERGL UND NICHT
 ja? (NICHT GEF.) 4 + @
 DUP =0 ja? (LISTENENDE) RETEX
 dann
 dann/nochmal 6 + ;n

#0 var CFLAG (Comment Flag)

:n $CSCAN 0 $PI @ $PE @
 je WEG 1 I @B #20 EXO >0
 ja? I @B CFLAG @B ja? #29 (KL. ZU) =
 ja? 0 CFLAG !B
 dann
 nein: #28 (KL. AUF) =
 ja? 1 CFLAG !B
 nein: WEG 2
 dann
 dann
 dann VERT ZWO = ja? 0
 nein: R>S $PI ! I S>R
 dann
 nun DUP =0 ja? $PE @ 1 + $PI ! VERT WEG 1 $P2 !
 dann ;n

:n $NAME 0 READYFLAG @B 0 $P2 !
 ja? 1 $CSCAN >0
 ja? $PI @ $P1 !
 2 $CSCAN PWEG #CE57 #8D
 $P1 @ $PI @ ZWO - DUP 63 > ja? WEG 63

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

156 of 179

 dann
 DUP $ND !B 1 - ZWO +
 je I @B $POLYNAME
 nun $ND 3 + !B $ND 1 + ! 1
 dann
 dann ;n

:n $ZAHL 1 (OK) 0 (ANF.) $PI @ 1 - $P1 @
 #2D ZWO @B = ja? 1 + -1 S>R (NEG) 10 (BASIS)
 nein: 1 S>R (POS)
 #23 ZWO @B =
 ja? 1 + 16
 nein: #42 ZWO @B =
 ja? 1 + 2
 nein: 10
 dann dann dann BASIS !
 VERT je BASIS @ * I @B DUP #3A < ja? #30 -
 dann
 DUP #40 > ja? #37 -
 dann
 DUP BASIS @ >= ZWO <0 ODER ja? (FEHLER) WEG 0 RDU
 dann +
 nun R>S * VERT ;n

:n COMPILER $NAME
ja? $SUCH
 1 (FUER WEITER) BEM @B
 ja? ZWO 'n RUMPELSTILZCHEN
 = ja? (RUMP.) 0 BEM !
 nein: (NICHT RUMP.) Z-LESEN @
 ja? PWEG 0 1
 nein: ZWO BEA @ <
 ja? IE WEG 0
 dann
 dann
 dann
 dann
 ja? (WEITERFLAG ?) DUP =0
 ja? (NUMBERPROCESSOR)
 WEG $ZAHL

 ja? COMPILEFLAG @B
 ja?
 'n 2BLITERAL $DEP $DEP
 nein: BEM @B ja? EINGABEZAHL ! 0 Z-LESEN !
 dann
 dann
 nein: IE
 dann
 nein: (FOUNDPROCESSOR) DUP 6 - @B #C0 UND
 COMPILEFLAG @B ODER

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

157 of 179

 DUP 1 =
 ja? WEG HIER $ML >=U ja? WEG MEMMESSAGE SYSWRITE
 nein: $DEP
 dann
 nein: DUP #80 = VERT #C1 = ODER
 ja? IE
 nein: R>S $V1 ! $TUE $V1 @ S>R
 dann
 dann
 dann

(this part has been changed to accomodate the Am1601 PSC/PSP)
(way of doing things. To avoid an Am1601 exception the stack)
(is loaded with 4 junk items on Reset. $SL is initialized to)
(#0004. Stack underflow is indicated by $PSHOLEN returning a)
(value below this)

 $PSHOLEN $SL < ja? $SL $PSSETZEN STACKMESSAGE SYSWRITE
 WEG $F1
 dann
 dann
dann READYFLAG @B $P2 @B UND
 ja? #20 TV8 !B
 TV8 DUP 1 + $PI @ TV8 - 1 - L>>>

 TV8 $CEN
 dann ;n

(Compiler Auxiliary routines)
(---------------------------)

:n ENTRYSETUP
 HIER #0001 UND <>0 ja?
 HIER 1 + $h !
 dann
 $F1 $KK ! $NAME DUP
 ja? $SUCH =0 NICHT $RS @ UND
 ja? RSMESSAGE SYSWRITE WEG 0
 nein: HIER DUP $KK ! LINK @ H2INC H2INC
 $DEP $ND ZWO 4 >>> LINK ! HIER VERT H2INC
 dann
 nein: NAMEMESSAGE SYSWRITE
 dann ;n

:n $GETADR $NAME ja? $SUCH DUP =0
 ja? IE 0
 nein: 1
 dann
 nein: NAMEMESSAGE SYSWRITE 0
 dann ;n
:hpri ' $GETADR ja? COMPILEFLAG @
 ja? 'n 2BLITERAL $DEP $DEP

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

158 of 179

 dann
 dann ;n

:prior ; 'n RETEX $DEP 0 COMPILEFLAG !B
 $F2 <>
 ja? STRUCMESSAGE $LANG + SYSLINE #20 + 16 >>>
 LINK @ DUP $H ! 4 + @ LINK ! 0 IE
 dann ;n

:int : ENTRYSETUP ja? DEFEX VERT ! 1 COMPILEFLAG !B $F2
 dann ;n
:n PRIMODIFY $KK @ @B ODER $KK @ !B ;n

:int :PRIOR i> 'n : $dep <i #80 PRIMODIFY ;n
:int :HPRI i> 'n : $dep <i #40 PRIMODIFY ;n
:int :INT i> 'n : $dep <i #C0 PRIMODIFY ;n

:prior JA? 'n BRONZ $DEP HIER H2INC ;n
:prior DANN HIER VERT ! ;n
:prior NEIN: 'n JUMP $DEP HIER H2INC VERT i> 'n DANN $dep <i ;n
:prior JE 'n $JEEX $DEP HIER H2INC ;n
:prior NUN 'n LOOPEX $DEP DUP i> 'n DANN $dep <i 2 + $DEP ;n
:prior +NUN 'n +LOOPEX $DEP DUP i> 'n DANN $dep <i 2 + $DEP ;n
:prior ANFANG HIER ;n
:prior ENDE? 'n BRONZ $DEP $DEP ;n
:prior DANN/NOCHMAL VERT 'n JUMP $DEP $DEP i> 'n DANN $dep <i ;n

:int KON ENTRYSETUP ja? CONSEX VERT ! $DEP
 dann ;n
:int VAR ENTRYSETUP ja? VAREX VERT ! $DEP
 dann ;n
:int FELD ENTRYSETUP ja? VAREX VERT ! HIER + $H !
 dann ;n

 'n TV4 02 +n $OC @n var SP (Screen Pointer)
:n !CHAR SP @ !B SP INCR ;n
:n TLITERAL I 1 + R>S @B PDUP + S>R SP @ PDUP + SP !
 VERT >>> ;n
:hpri " $PI INCR $PI @ 0 ZWO DUP 257 + DUP $TVE >
 ja? WEG $TVE dann
 je $PI @ @B #22 =
 ja?
 R>S PWEG 1 I S>R
 dann $PI INCR
 nun
 ZWO $PI @ 2 - VERT - DUP >0 RDO UND
 ja? COMPILEFLAG @
 ja?
 S>R I 'n TLITERAL $DEP HIER !B
 $H INCR HIER I >>> HIER R>S + $H !
 dann
 nein: TEXTMESSAGE SYSWRITE VERT WEG

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

159 of 179

 dann ;n

:int !T VERT >>> ;n

:n LEERZ S>R SP @ #20 ZWO !B DUP 1 + R>S 1 - L>>> ;n

:int OK SP @ SYSLINE SP ! #40 LEERZ SP ! ;n

:n !FK S>R I 2 * + 1 R>S je 2 - DUP S>R ! R>S
 nun WEG ;n

:n WAND BASIS @ 10 = ja? DUP (ZAHL) <0
 ja? CHS #2D (-) !CHAR
 dann 10000 0 (W.-ANFANG)
 nein: 16 BASIS ! #23 (#) !CHAR
 #1000 1 (W.-ANFANG)
 dann S>R
 anfang VERT ZWO /MOD VERT
 I NICHT ja? DUP >0 ja? R>S WEG 1 S>R
 dann dann
 I ja? DUP #30 + DUP #39 >
 ja? 7 +
 dann !CHAR
 dann
 WEG VERT BASIS @ / DUP =0
 ende? PWEG R>S NICHT ja? #30 !CHAR
 dann ;n

:n $INSERT VERT #7 UND 2 * KETTE + ! ;n

:n $CHAINACT COMPILEFLAG @
 ja? 'n 2BLITERAL $DEP $DEP
 'n $INSERT $DEP
 nein: ZWO #FFF8 UND (mask for 0-7)
 =0 ja? $INSERT
 nein: IE
 dann
 dann ;n

:hpri AUSH 'n RUMPELSTILZCHEN $CHAINACT ;n
:hpri EINH $GETADR ja? $CHAINACT
 dann ;n

32 feld STACKBUF (Temporary Storage for Parameter Stack)
#0 var SCOUNT

:n ZEIG-STAPEL
 $P2 @ ja? (End of block reached?)
 SP @
 S>R (Save SP on return stack)
 $TVS SP ! #80 LEERZ (Blank Stack Display)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

160 of 179

 $PSHOLEN $SL - (Get # entries)
 DUP 16 > ja?
 WEG 16 (Max of 16 to display)
 dann
 DUP >0 ja?
 #1 - DUP SCOUNT !
 00 VERT je (copy p-stack to memory)
 I DUP + STACKBUF + !
 nun
 SCOUNT @ #1 + S>R
 anfang R>S DUP >0 ja?
 1 - DUP S>R
 DUP + STACKBUF + @
 DUP $TVS SCOUNT @ I - 8 * + SP ! WAND
 dann/nochmal
 WEG
 nein:
 WEG (discard count)
 dann
 R>S SP ! (restore SP)
 dann
;n

:int ? $GETADR ja? 2 +
 dann ;n

:n SCHREIB S>R SP @ I >>> SP @ R>S + SP ! ;n

:int WEG/AB
 $GETADR ja? DUP $LL VERT >=U
 ja? IE
 nein: 2 - DUP @ LINK ! 4 - $H !
 dann
 dann ;n

(End IPS-F1G)

(Utilities and extensions)
(------------------------)

:int AWEG $SL $PSSETZEN ;n (Clear Stack)

:n LANG <>0 ja? L-STACKMESSAGE STACKMESSAGE -
 nein: 0
 dann 'n $LANG 2 + ! ;n

:n S-ON i> 'n 0 $dep 'n 2BLITERAL $dep
 'n ZEIG-STAPEL $dep 'n $INSERT $dep <i ;n

(Build the rest of SYSPAGE etc)
(-----------------------------)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

161 of 179

'n COMPILER (Construct chain)
'n ZEIG-STAPEL
'n RUMPELSTILZCHEN dup dup dup dup dup dup
'n JUMP #0500 #0500 $OC 11 !fk

 hier 'n $LL #2 +n !O (Set $LL)
 hier 'n $H #2 +n $OC @n !O (Set $H)
 $$tv8 'n $PI #2 +n $OC @n !O (Initialise $PI)
 'n $ND #2 +n #053E !O (Pointer for $SCODE)
$ccodes 22 +n @n 'n LINK #2 +n !O (Set LINK)

 $$tv8 $$kbdip $OC !n (INPUTPOINTER)
 $$tve $$pe $OC !n
 #0 $$inson $OC !b (Insert Flag ON)
 #A0 $$tv8 $OC !b (Initial Blob Cursor)
 #0 $$readyflag $OC !b

 (End of metacompilation)

(Save IPS-F1G binary image; compilation off)
(--)

#0000 $OC hier $OC ~ IPS-F1G.BIN ~ $save <X
~ IPS-F1G compiled OK ~ #01D5 !t (info splash)

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

162 of 179

APPENDIX A – Machine Instruction Decoding Guide

1st BYTE

HEX BINARY

2nd BYTE

BYTES 3 & 4

Am1601 Instruction Format

00 0000 0000 <c> - #0<c> sJMP
01 0000 0001 <c> - #1<c> sJMP
02 0000 0010 <c> - #2<c> sJMP
03 0000 0011 <c> - #3<c> sJMP
04 0000 0100 <c> - #4<c> sJMP
05 0000 0101 <c> - #5<c> sJMP
06 0000 0110 <c> - #6<c> sJMP
07 0000 0111 <c> - #7<c> sJMP
08 0000 1000 <c> - #8<c> sJMP
09 0000 1001 <c> - #9<c> sJMP
0A 0000 1010 <c> - #A<c> sJMP
0B 0000 1011 <c> - #B<c> sJMP
0C 0000 1100 <c> - #C<c> sJMP
0D 0000 1101 <c> - #D<c> sJMP
0E 0000 1110 <c> - #E<c> sJMP
OF 0000 1111 <c> - #F<c> sJMP
10 0001 0000 <c> - #0<c> sJSR
11 0001 0001 <c> - #1<c> sJSR
12 0001 0010 <c> - #2<c> sJSR
13 0001 0011 <c> - #3<c> sJSR
14 0001 0100 <c> - #4<c> sJSR
15 0001 0101 <c> - #5<c> sJSR
16 0001 0110 <c> - #6<c> sJSR
17 0001 0111 <c> - #7<c> sJSR
18 0001 1000 <c> - #8<c> sJSR
19 0001 1001 <c> - #9<c> sJSR
1A 0001 1010 <c> - #A<c> sJSR
1B 0001 1011 <c> - #B<c> sJSR
1C 0001 1100 <c> - #C<c> sJSR
1D 0001 1101 <c> - #D<c> sJSR
1E 0001 1110 <c> - #E<c> sJSR
1F 0001 1111 <c> - #F<c> sJSR
20 0010 0000 <c> - #0<c> sLOAD
21 0010 0001 <c> - #1<c> sLOAD
22 0010 0010 <c> - #2<c> sLOAD
23 0010 0011 <c> - #3<c> sLOAD
24 0010 0100 <c> - #4<c> sLOAD
25 0010 0101 <c> - #5<c> sLOAD
26 0010 0110 <c> - #6<c> sLOAD
27 0010 0111 <c> - #7<c> sLOAD
28 0010 1000 <c> - #8<c> sLOAD
29 0010 1001 <c> - #9<c> sLOAD

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

163 of 179

2A 0010 1010 <c> - #A<c> sLOAD
2B 0010 1011 <c> - #B<c> sLOAD
2C 0010 1100 <c> - #C<c> sLOAD
2D 0010 1101 <c> - #D<c> sLOAD
2E 0010 1110 <c> - #E<c> sLOAD
2F 0010 1111 <c> - #F<c> sLOAD
30 0011 0000 <c> - #0<c> sSTORE
31 0011 0001 <c> - #1<c> sSTORE
32 0011 0010 <c> - #2<c> sSTORE
33 0011 0011 <c> - #3<c> sSTORE
34 0011 0100 <c> - #4<c> sSTORE
35 0011 0101 <c> - #5<c> sSTORE
36 0011 0110 <c> - #6<c> sSTORE
37 0011 0111 <c> - #7<c> sSTORE
38 0011 1000 <c> - #8<c> sSTORE
39 0011 1001 <c> - #9<c> sSTORE
3A 0011 1010 <c> - #A<c> sSTORE
3B 0011 1011 <c> - #B<c> sSTORE
3C 0011 1100 <c> - #C<c> sSTORE
3D 0011 1101 <c> - #D<c> sSTORE
3E 0011 1110 <c> - #E<c> sSTORE
3F 0011 1111 <c> - #F<c> sSTORE
40 0100 0000 <f><g> - #0<f><g> sBR
41 0100 0001 <f><g> - #1<f><g> sBR
42 0100 0010 <f><g> - #2<f><g> sBR
43 0100 0011 <f><g> - #3<f><g> sBR
44 0100 0100 <f><g> - #4<f><g> sBR
45 0100 0101 <f><g> - #5<f><g> sBR
46 0100 0110 <f><g> - #6<f><g> sBR
47 0100 0111 <f><g> - #7<f><g> sBR
48 0100 1000 <f><g> - #8<f><g> sBR
49 0100 1001 <f><g> - #9<f><g> sBR
4A 0100 1010 <f><g> - #A<f><g> sBR
4B 0100 1011 <f><g> - #B<f><g> sBR
4C 0100 1100 <f><g> - #C<f><g> sBR
4D 0100 1101 <f><g> - #D<f><g> sBR
4E 0100 1110 <f><g> - #E<f><g> sBR
4F 0100 1111 <f><g> - #F<f><g> sBR
50 0101 0000 <f><g> - #0<f><g> sBSR
51 0101 0001 <f><g> - #1<f><g> sBSR
52 0101 0010 <f><g> - #2<f><g> sBSR
53 0101 0011 <f><g> - #3<f><g> sBSR
54 0101 0100 <f><g> - #4<f><g> sBSR
55 0101 0101 <f><g> - #5<f><g> sBSR
56 0101 0110 <f><g> - #6<f><g> sBSR
57 0101 0111 <f><g> - #7<f><g> sBSR
58 0101 1000 <f><g> - #8<f><g> sBSR
59 0101 1001 <f><g> - #9<f><g> sBSR
5A 0101 1010 <f><g> - #A<f><g> sBSR

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

164 of 179

5B 0101 1011 <f><g> - #B<f><g> sBSR
5C 0101 1100 <f><g> - #C<f><g> sBSR
5D 0101 1101 <f><g> - #D<f><g> sBSR
5E 0101 1110 <f><g> - #E<f><g> sBSR
5F 0101 1111 <f><g> - #F<f><g> sBSR
60 0110 0000 0<cc> nnnn (LSB first) nnnn cc cNLOAD
61 0110 0001 - * RESERVED *
62 0110 0010 - * RESERVED *
63 0110 0011 - * RESERVED *
64 0110 0100 - * RESERVED *
65 0110 0101 - * RESERVED *
66 0110 0110 - * RESERVED *
67 0110 0111 - * RESERVED *
68 0110 1000 - * RESERVED *
69 0110 1001 - * RESERVED *
6A 0110 1010 - * RESERVED *
6B 0110 1011 - * RESERVED *
6C 0110 1100 - * RESERVED *
6D 0110 1101 - * RESERVED *
6E 0110 1110 - * RESERVED *
6F 0110 1111 - * RESERVED *
70 0111 0000 Unsigned value - uN uNLOAD
71 0111 0001 Signed value - sN sNLOAD
72 0111 0010 - - * RESERVED *
73 0111 0011 - - * RESERVED *
74 0111 0100 - - * RESERVED *
75 0111 0101 - - * RESERVED *
76 0111 0110 - - * RESERVED *
77 0111 0111 - - * RESERVED *
78 0111 1000 - - * RESERVED *
79 0111 1001 - - * RESERVED *
7A 0111 1010 - - * RESERVED *
7B 0111 1011 - - * RESERVED *
7C 0111 1100 - - * RESERVED *
7D 0111 1101 - - * RESERVED *
7E 0111 1110 - - * RESERVED *
7F 0111 1111 - - * RESERVED *
80 1000 0000 0<cc> nnnn (LSB first) nnnn cc cJSR
81 1000 0001 0<cc> nnnn (LSB first) nnnn cc cJMP
82 1000 0010 0<cc> nnnn (LSB first) nnnn cc cLOAD
83 1000 0011 0<cc> nnnn (LSB first) nnnn cc cSTORE
84 1000 0100 0<cc> nnnn (LSB first) nnnn cc cLOADB
85 1000 0101 0<cc> nnnn (LSB first) nnnn cc cSTOREB
86 1000 0110 - - * RESERVED *
87 1000 0111 - - * RESERVED *
88 1000 1000 0<cc> - cc cpJSR
89 1000 1001 0<cc> - cc cpJMP
8A 1000 1010 0<cc> - cc cpLOAD
8B 1000 1011 0<cc> - cc cpSTORE

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

165 of 179

8C 1000 1100 0<cc> - cc cpLOADB
8D 1000 1101 0<cc> - cc cpSTOREB
8E 1000 1110 0<cc> - cc cRTS
8F 1000 1111 0<cc> - cc cpBSR
90 1001 0000 Signed value - ee EQ cBR
91 1001 0001 Signed value - ee NE cBR
92 1001 0010 Signed value - ee CS cBR
93 1001 0011 Signed value - ee CC cBR
94 1001 0100 Signed value - ee MI cBR
95 1001 0101 Signed value - ee PL cBR
96 1001 0110 Signed value - ee VS cBR
97 1001 0111 Signed value - ee VC cBR
98 1001 1000 Signed value - ee HS cBR
99 1001 1001 Signed value - ee LO cBR
9A 1001 1010 Signed value - ee GE cBR
9B 1001 1011 Signed value - ee LT cBR
9C 1001 1100 Signed value - ee GT cBR
9D 1001 1101 Signed value - ee LE cBR
9E 1001 1110 Signed value - ee AL cBR
9F 1001 1111 Signed value - ee NEF cBR
A0 1010 0000 Unsigned value - uN uN ADD
A1 1010 0001 Unsigned value - uN uN ADC
A2 1010 0010 Unsigned value - uN uN SUB
A3 1010 0011 Unsigned value - uN uN SBC
A4 1010 0100 Unsigned value - uN uN RSUB
A5 1010 0101 Unsigned value - uN uN RSBC
A6 1010 0110 Unsigned value - uN uN AND
A7 1010 0111 Unsigned value - uN uN OR
A8 1010 1000 Unsigned value - uN uN EOR
A9 1010 1001 - - * RESERVED *
AA 1010 1010 Unsigned value - uN uN RCMP
AB 1010 1011 Unsigned value - uN uN CMP
AC 1010 1100 Unsigned value

Lower Nibble Only
- uN uN MASK

AD 1010 1101 - - * RESERVED *
AE 1010 1110 Unsigned value - uN uN TST
AF 1010 1111 - - * RESERVED *
B0 1011 0000 Signed value - sN sN ADD
B1 1011 0001 Signed value - sN sN ADC
B2 1011 0010 Signed value - sN sN SUB
B3 1011 0011 Signed value - sN sN SBC
B4 1011 0100 Signed value - sN sN RSUB
B5 1011 0101 Signed value - sN sN RSBC
B6 1011 0110 Signed value - sN sN AND
B7 1011 0111 Signed value - sN sN OR
B8 1011 1000 Signed value - sN sN EOR
B9 1011 1001 - - * RESERVED *
BA 1011 1010 Signed value - sN sN RCMP
BB 1011 1011 Signed value - sN sN CMP

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

166 of 179

BC 1011 1100 - - * RESERVED *
BD 1011 1101 - - * RESERVED *
BE 1011 1110 Signed value - sN sN TST
BF 1011 1111 - - * RESERVED *
C0 1100 0000 See Appendix B - ALUP1
C1 1100 0001 See Appendix B - STACK
C2 1100 0010 See Appendix B - SHIFT
C3 1100 0011 - - * RESERVED *
C4 1100 0100 - - * RESERVED *
C5 1100 0101 - - * RESERVED *
C6 1100 0110 - - * RESERVED *
C7 1100 0111 - - * RESERVED *
C8 1100 1000 - - * RESERVED *
C9 1100 1001 - - * RESERVED *
CA 1100 1010 - - * RESERVED *
CB 1100 1011 - - * RESERVED *
CC 1100 1100 - - * RESERVED *
CD 1100 1101 - - * RESERVED *
CE 1100 1110 - - * RESERVED *
CF 1100 1111 - - * RESERVED *
D0 1101 0000 #<qq>0 - qq PUSHPS
D1 1101 0001 #<qq>0 - qq POPPS
D2 1101 0010 #<qq>0 - qq PUSHRS
D3 1101 0011 #<qq>0 - qq POPRS
D4 1101 0100 #<m>0 - m SET
D5 1101 0101 #<m>0 - m CLEAR
D6 1101 0110 - - * RESERVED *
D7 1101 0111 - - * RESERVED *
D8 1101 1000 - - * RESERVED *
D9 1101 1001 - - * RESERVED *
DA 1101 1010 - - * RESERVED *
DB 1101 1011 - - * RESERVED *
DC 1101 1100 - - *RESERVED*
DD 1101 1101 - - * RESERVED *
DE 1101 1110 - - * RESERVED *
DF 1101 1111 - - * RESERVED *
E0 1110 0000 - - * RESERVED *
E1 1110 0001 - - * RESERVED *
E2 1110 0010 0<cc> nnnn (LSB first) nnnn cc cIN
E3 1110 0011 0<cc> nnnn (LSB first) nnnn cc cOUT
E4 1110 0100 0<cc> nnnn (LSB first) nnnn cc cINB
E5 1110 0101 0<cc> nnnn (LSB first) nnnn cc cOUTB
E6 1110 0110 - - * RESERVED *
E7 1110 0111 - - * RESERVED *
E8 1110 1000 - - * RESERVED *
E9 1110 1001 - - * RESERVED *
EA 1110 1010 0<cc> - cc cpIN
EB 1110 1011 0<cc> - cc cpOUT
EC 1110 1100 0<cc> - cc cpINB

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

167 of 179

ED 1110 1101 0<cc> - cc cpOUTB
EE 1110 1110 - - * RESERVED *
EF 1110 1111 - - * RESERVED *
F0 1111 0000 0<cc> - cc EMULATE
F1 1111 0001 0<cc> - cc EXECUTE
F2 1111 0010 0<cc> - cc PREPARE
F3 1111 0011 - - * RESERVED *
F4 1111 0100 - - * RESERVED *
F5 1111 0101 - - * RESERVED *
F6 1111 0110 0<cc> - cc REFRESH
F7 1111 0111 - - * RESERVED *
F8 1111 1000 #00 - DFX
F9 1111 1001 - - * RESERVED *
FA 1111 1010 - - * RESERVED *
FB 1111 1011 #00 - 2BLIT
FC 1111 1100 #00 - JPPC
FD 1111 1101 #00 - XB
FE 1111 1110 - - * RESERVED *
FF 1111 1111 0<cc> - cc FLAG

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

168 of 179

APPENDIX B – Machine Instruction Encoding Matrix

 0 1 2 3 4 5 6 7
0 sJMP sJSR sLOAD sSTORE sBR sBSR cNLOAD uNLOAD
1 sJMP sJSR sLOAD sSTORE sBR sBSR * sNLOAD
2 sJMP sJSR sLOAD sSTORE sBR sBSR * *
3 sJMP sJSR sLOAD sSTORE sBR sBSR * *
4 sJMP sJSR sLOAD sSTORE sBR sBSR * *
5 sJMP sJSR sLOAD sSTORE sBR sBSR * *
6 sJMP sJSR sLOAD sSTORE sBR sBSR * *
7 sJMP sJSR sLOAD sSTORE sBR sBSR * *
8 sJMP sJSR sLOAD sSTORE sBR sBSR * *
9 sJMP sJSR sLOAD sSTORE sBR sBSR * *
A sJMP sJSR sLOAD sSTORE sBR sBSR * *
B sJMP sJSR sLOAD sSTORE sBR sBSR * *
C sJMP sJSR sLOAD sSTORE sBR sBSR * *
D sJMP sJSR sLOAD sSTORE sBR sBSR * *
E sJMP sJSR sLOAD sSTORE sBR sBSR * *
F sJMP sJSR sLOAD sSTORE sBR sBSR * *

* Reserved

 8 9 A B C D E F
0 cJSR EQ cBR uN ADD sN ADD ALUP1 PUSHPS * EMULATE
1 cJMP NE cBR uN ADC sN ADC STACK POPPS * EXECUTE
2 cLOAD CS cBR uN SUB sN SUB SHIFT PUSHRS cIN PREPARE
3 cSTORE CC cBR uN SBC sN SBC * POPRS cOUT *
4 cLOADB MI cBR uN RSUB sN RSUB * SET cINB *
5 cSTOREB PL cBR uN RSBC sN RSBC * CLEAR cOUTB *
6 * VS cBR uN AND sN AND * * * REFRESH
7 * VC cBR uN OR sN OR * * * *
8 cpJSR HS cBR uN EOR sN EOR * * * DFX
9 cpJMP LO cBR * * * * * *
A cpLOAD GE cBR un RCMP sN RCMP * * cpIN *
B cpSTORE LT cBR uN CMP sN CMP * * cpOUT 2BLIT
C cpLOADB GT cBR uN MASK * * * cpINB JPPC
D cpSTOREB LE cBR * * * * cpOUTB XB
E cRTS AL cBR uN TST sN TST * * * *
F cpBSR NEF cBR * * * * * FLAG

* Reserved

ALUP1 GROUP (#C0)

2nd Byte Instruction

#00 P1 ADD
#10 P1 ADC
#20 P1 RSUB
#30 P1 RSBC
#40 P0 SUB
#50 P0 SBC
#60 P1 AND
#70 P1 OR
#80 P1 EOR
#90 NOP
#A0 P0 CMP
#B0 P1 RCMP
#C0 P0 MASK
#D0 CPL
#E0 P1 TST
#F0 NEG

STACK GROUP (#C1)

2nd Byte Instruction

#00 DUPL
#10 DEL
#20 SWAP
#30 SOT
#40 RTU
#50 RTD
#60 PTOR
#70 RTOP
#80 IDX
#90 XRP

SHIFT GROUP (#C2)

2nd Byte Instruction
#00 LSL
#10 LSR
#20 ROL
#30 ROR
#90 ASR

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

169 of 179

APPENDIX C – GNU Free Documentation License

GNU Free Documentation License
Version 1.1, March 2000

 Copyright (C) 2000 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software. We have designed this
License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. A “Modified Version” of the Document means any
work containing the Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language. A “Secondary Section” is a
named appendix or a front-matter section of the Document that deals exclusively with
the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (For example, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a
matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them. The “Invariant
Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this
License. The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is released
under this License. A “Transparent” copy of the Document means a machine-readable
copy, represented in a format whose specification is available to the general public,
whose contents can be viewed and edited directly and straightforwardly with generic text

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

170 of 179

editors or (for images composed of pixels) generic paint programs or (for drawings)
some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose markup has been designed to
thwart or discourage subsequent modification by readers is not Transparent. A copy
that is not “Transparent” is called “Opaque”. Examples of suitable formats for
Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX
input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML designed for human modification. Opaque formats include PostScript,
PDF, proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML produced by some word processors for
output purposes only. The “Title Page” means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and that
you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies you
make or distribute. However, you may accept compensation in exchange for copies. If
you distribute a large enough number of copies you must also follow the conditions in
section 3. You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects. If the required texts for either cover are too
voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably)
on the actual cover, and continue the rest onto adjacent pages. If you publish or
distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a publicly-accessible computer-network location containing a
complete Transparent copy of the Document, free of added material, which the general
network-using public has access to download anonymously at no charge using public-
standard network protocols. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

171 of 179

year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public. It is requested, but not required, that you contact
the authors of the Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section entitled “History” in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its Title Page, then add
an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

172 of 179

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles. You may add a section entitled “Endorsements”,
provided it contains nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard. You may add a passage of up
to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text
for the same cover, previously added by you or by arrangement made by the same entity
you are acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one. The author(s)
and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or simply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its
license notice. The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make the title of
each such section unique by adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or else a unique number. Make the
same adjustment to the section titles in the list of Invariant Sections in the license notice
of the combined work. In the combination, you must combine any sections entitled
“History” in the various original documents, forming one section entitled “History”;
likewise combine any sections entitled “Acknowledgements”, and any sections entitled
“Dedications”. You must delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

173 of 179

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects. You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not as
a whole count as a Modified Version of the Document, provided no compilation copyright
is claimed for the compilation. Such a compilation is called an “aggregate”, and this
License does not apply to the other self-contained works thus compiled with the
Document, on account of their being thus compiled, if they are not themselves derivative
works of the Document. If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one quarter of the entire
aggregate, the Document’s Cover Texts may be placed on covers that surround only the
Document within the aggregate. Otherwise they must appear on covers around the
whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License provided that you also
include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/. Each version of the License is given a distinguishing
version number. If the Document specifies that a particular numbered version of this

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

174 of 179

License “or any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published
(not as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

175 of 179

APPENDIX D – GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software--to make sure the software is free for all its
users. This General Public License applies to most of the Free Software Foundation’s
software and to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

 We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified
by someone else and passed on, we want its recipients to know that what they have is
not the original, so that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all. The precise terms
and conditions for copying, distribution and modification follow.

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

176 of 179

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The “Program”, below, refers to any such program or work, and a “work based
on the Program” means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is
included without limitation in the term “modification”.) Each licensee is addressed as
“you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming
a work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole at
no charge to all third parties under the terms of this License.

 c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally print
such an announcement, your work based on the Program is not required to print an
announcement.) These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program, and can be
reasonably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

177 of 179

this License, whose permissions for other licensees extend to the entire whole, and thus
to each and every part regardless of who wrote it. Thus, it is not the intent of this section
to claim rights or contest your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or collective works based on the
Program. In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that
you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution, a
complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

 c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus the
scripts used to control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable. If distribution of executable or object code is made by
offering access to copy from a designated place, then offering equivalent access to copy
the source code from the same place counts as distribution of the source code, even
though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

178 of 179

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute or
modify the Program subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the
Program. If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and the section
as a whole is intended to apply in other circumstances. It is not the purpose of this
section to induce you to infringe any patents or other property right claims or to contest
validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that system; it is
up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice. This section is intended to make
thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries not
thus excluded. In such case, this License incorporates the limitation as if written in the
body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. Each
version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be

* DRAFT * Am1601 Programmer's Reference
 Revision 1.0.12 - October 29, 2002

179 of 179

guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

