[Date Prev][Date Next][Thread Prev][Thread Next] - [Date Index][Thread Index][Author Index]



Progressive Plant Growing is a Blooming Business


Soil. Water. Say that plants don't need them and people may think you've 
traded your cow -- and your good sense -- for a handful of beans. But 
NASA-sponsored plant experiments prove that you don't need soil and lots 
of water to grow a beanstalk that would make Jack proud.

  Plants have been to space since 1960, but NASA's plant growth 
experiments began in earnest during the 1990s. Experiments aboard the 
space shuttle and International Space Station have exposed plants to the 
effects of microgravity. These experiments use the principles of 
aeroponics: growing plants in an air/mist environment with no soil and 
very little water.

Image at right: These plants have developed healthy root systems without 
soil in a rapid-growth aeroponic system. (Image credit: AgriHouse, Inc.)


In 1997, NASA-sponsored studies aboard the Mir space station studied 
adzuki bean seeds and seedlings, a high-protein Asian food crop. While 
the beans were growing in zero gravity, ground control experiments 
watched to see how another group of seeds and seedlings responded on 
Earth. Both sets of plants were treated with an all-natural, 
organically-derived, disease control liquid known as Organic Disease 
Control, or Organically Derived Colloidals (ODC).

While all of the seeds did well, those aboard Mir grew more than those 
on Earth. Both sets of plants treated with the ODC method grew more 
robustly and exhibited less fungal infection than the untreated seeds 
and seedlings.

Results from NASA's research aboard Mir has contributed to rapid-growth 
systems now used on Earth. Plants are started from either cuttings or 
seeds, then suspended mid-air in a growing chamber. The developing root 
systems grow in an enclosed, air-based environment that is regularly 
misted with a fine, nutrient-rich spray. 

Aeroponic growing systems provide clean, efficient, and rapid food 
production. Crops can be planted and harvested in the system year round 
without interruption, and without contamination from soil, pesticides, 
and residue. Since the growing environment is clean and sterile, it 
greatly reduces the chances of spreading plant disease and infection 
commonly found in soil and other growing media.

Image at right: A grower clips the leaves of plants grown in the 
openings of an aeroponic growing chamber. (Image credit: AgriHouse, Inc.)

The suspended system also has other advantages. Seedlings don't stretch 
or wilt while their roots are forming. Once the roots are developed, the 
plants can be easily moved into any type of growing media without the 
risk of transplant shock, which often sets back normal growth.

Aeroponics systems can reduce water usage by 98 percent, fertilizer 
usage by 60 percent, and pesticide usage by 100 percent, all while 
maximizing crop yields. Plants grown in the aeroponic systems have also 
been shown to uptake more minerals and vitamins, making the plants 
healthier and potentially more nutritious.

As an example, let's talk tomatoes. Tomato growers traditionally start 
their plants in pots, waiting at least 28 days before transplanting them 
into the ground. Using an aeroponic system, growers can start the plants 
in the growing chamber, then transplant them just 10 days later. This 
advanced technology produces six tomato crop cycles per year, instead of 
the traditional one to two crop cycles.

That's good news for those who love marinara sauce.

Successful long-term missions into deep space will require that crews 
grow some of their own food during flight. Aeroponic crops are also a 
potential source of fresh oxygen and clean drinking water. But this is 
about more than a breath of fresh air or taking a quick shower. Each 
ounce of food and water produced aboard a spacecraft reduces payload 
weight, allowing space for other cargo that can't be produced onboard.

With technology like this, jumping over the moon won't be reserved for 
fairy tales.

Read the entire article in /Spinoff 2006/. + View PDF, 9.6 MB 

Sent via sarex@amsat.org. Opinions expressed are those of the author.
Not an AMSAT member? Join now to support the amateur satellite program!
Subscription settings: http://amsat.org/mailman/listinfo/sarex